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Statistical reasoning is often presented through a variety of statistical “tests” – usually leaving 
many students bewildered. A foundation for understanding what statistical reasoning is and how 
it works can help students understand how to make sensible decisions from data before they move 
to formal techniques. Simulations, made possible by technology such as graphing calculators or 
computer software, can provide students with a conceptual basis for inference. By generating 
sampling distributions, students can analyze the behavior of a given statistic, explore whether a 
given observation is likely, investigate the effect of changing sample size, and consider how 
distributions differ. Such experiences give students a sense of how to reason from data and help 
to explain what is behind some of the formal tools of inference. Examples from the world outside 
of the classroom illustrate how simulation can be a tool in making sensible decisions giving 
students opportunities to see why statistics is important. 
 

Business, industry, the government, the health field, education agencies collect data about 
what they do and how they operate to make decisions about what works and what does not, 
possible future directions, or how to become more efficient. Unfortunately, the answers are 
seldom clearly present in those data. Individuals, objects, repeated measurements on the same 
object vary, sometimes due to chance and sometimes due to other factors. Statistics is the science 
of reasoning from data in the presence of this variability (Moore, 1997). And a key element in this 
process is the role of randomization, or chance, as a tool in learning how to recognize, measure, 
decrease, or stabilize variability. Chance behavior, while unpredictable in the short run, has a 
regular and predictable pattern in the long run. Statistical inference, making use of this 
predictability, is based on an explicit chance model for the data (Freedman, Posani, & Purves, 
1998).  

In real life, you would not have the opportunity to repeat a study many times.  
Simulation, however, is a powerful tool that allows you to investigate what happens if the study 
could be repeated over and over again. Simulation allows students to gather information about 
what happens by chance and to use statistical reasoning to analyze the outcomes. Simulation can 
be used to create a chance model of the situation to explore the variability in the distribution of a 
sample statistic describing some characteristic of the population. Such sampling distributions 
answer the question: How would the statistic behave if the process were repeated many, many 
times? A key question is: does the observed behavior differ from what would be expected just by 
chance?  

To understand how this reasoning process works and before setting up a theoretical 
hypothesis test, students need to experience for themselves how sampling distributions behave 
and to explore the patterns that emerge. Graphing calculators allow students to work on a daily 
basis in whatever place they choose to work to experiment with the data and test the conditions to 
see whether the patterns change. This paper presents three problems that can be analyzed by 
simulation. The objective is to create a process using simulation that will enable students to 
establish a sense of how to reason from data. More formal approaches to inferential statistics can 
be done later if and when they are appropriate for the course and the student. In each of the 
examples, the task is to define a statistic in response to the question of interest, generate a 
sampling distribution of the random behavior of this statistic; analyze the variability in the 
sampling distribution, and compare the observed behavior to the simulated random behavior. 
Probability is used as a tool to quantify how likely the observed behavior would occur if it were 
due to chance. 
 
WESTVACO CASE 

In the early 1990s, the Westvaco Corporation, due to changing circumstances, did not 
have enough work for all of its employees. Thus, they “laid off” some of the employees until such 
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time, if ever, that the market becomes once again more favorable (Cobb, 1997). Westvaco laid off 
employees in five rounds, a different number of employees in different divisions each time. One 
of the employees who was let go, Robert Martin, became concerned that the company was laying 
off employees based on age, which would violate age-discrimination laws. As a consequence he 
sued the company in a court of law. In the third round of lay-offs, the ages of the three employees 
in one category who were laid off were 55, 55, and 64. To keep the problem manageable, suppose 
that the only other information you knew was the ages of all of the ten employees in this category: 
25, 33, 35, 38, 48, 55, 55, 55, 56, 64. (In the actual case, other information such as seniority, work 
performance, and salary was also available.) Based just on this information, does it seem that 
Martin had a legitimate claim? In other words, were the ages of those laid off really older than 
those who were not laid off and, if so, could this have happened just by chance? 

What could have occurred by chance?  To find out, students can create a simulation 
model of the ten employees and use a chance mechanism to select those to lay off. One approach 
might be to choose without replacement from a set of ten random numbers each representing one 
of the ages. (In this case, note that if “1” represents an age of 25, “6”, “7”, and “8” would all 
represent the age 55.) A randomly chosen sample of three numbers will represent those who were 
laid off just by chance. How do these ages vary from the ages of those who were actually laid off? 
Students can choose a statistic that describes the sample of ages, then use simulation to create a 
sampling distribution for that statistic. In the sample below, the statistic was the mean age of the 
three laid off employees in a simulation of 116 rounds of layoffs. 
 

Table 1. Mean Age of Those Laid Off 
Mean age 
of those 
laid off 

Frequency  Mean 
age of 
those 
laid 
off 

Frequency 

31   45 11111 11 
32 1  46 11111 11111 
33 11  47 11 
34   48 11111 11111 
35 11  49 1 
36 11  50 11111 111 
37 11  51 11111 11111 
38 1111  52 11111 1 
39 111  53 1111 
40 1111  54 11 
41 11111 11111  55 11111 1 
42 11111 11  56  
43 111  57 11111 1 
44   58 1111 
   59  

 
The actual mean age of the three laid-off employees was 58. In the distribution of the 

mean ages from the samples, a mean age of 58 or more occurred 4 out of 116 or about 3% of the 
time. The decision – which separates statistics from mathematics – is whether you (or the judge) 
feel that something that occurs 3% of the time is an unlikely event. In most cases, an event that 
occurs less than 5% is “statistically significant.” It seems that a mean age of 58 does not often 
occur by chance; there seems to be reason to doubt that the lay-offs were due just to chance. (The 
actual case, which involved a more complete and thorough analysis of all of those laid off, was 
settled out of court.) 
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TRUE FALSE TESTS 
What is the chance of passing a true-false test with a score of 60% just by guessing? Will 

your chance of passing increase, decrease, or stay the same if the number of questions increases? 
Suppose a test had ten questions. The item of interest is the number correct in each test or 

set of ten questions.  If 1 is correct and 0 incorrect, ten random numbers either 0 or 1 will 
represent each of the ten questions on the test where the number 1 is the number correct. Table 2 
shows one sampling distribution of 50 simulations, and Figure 1 displays a histogram of the 
results. 
 
Table 2. Ten-question true-false test 

According to this simulation, a score of 60% or better 
occurred 20 out of 50 times  - a 40% chance of passing.  It is 
important for students to see the distribution grow. They 
should think about what shape they expect to see and why.  By 
inspecting the frequency distribution rather than just summary 
counts, students can have a visual image of what 40% 
probability looks like in relation to the distribution as well as 
experience thinking about probability as area.   

Technology is a critical tool in enabling students to 
carry out the simulations but must be used carefully and only 
when students have done enough hands-on activities to 
appreciate what the technology generates.  The commands 
(sum(randInt (0, 1, 10)) on a TI-83 will generate a set of ten 

random numbers either 0 or 1 and sum the set.  Pressing ENTER will simulate the next test, i.e. 
generate the next set of ten numbers.  The theoretical probability of passing at the 60% level 
could be found on a TI 83 by using 1-binomcdf (10, 5, 5)) or about 38% of the time, but just as in 
the earlier example, the formal work can come at a later time. Some students might be ready to 
use rand Bin(10, .5, 50)STO L1 and plot L1 to see the distribution.  Care must be taken here to 
ensure that the goal of the lesson does not become which button to push and lose the meaning. 

By exploring sampling distributions from simulations of tests with an increasing number 
of questions students can see what happens to the shape, mean, and standard deviation. The 
chance of getting a grade of 60% decreases as the number of questions increases (Figures 1, 2, 
Table 3). 
 

 Figure 1 . Number correct in 20 questions
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      Figure 2. Number correct in 40 questions
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Number 
correct 

Number of tests 

0  
1 1 
2 1111 
3 11111 
4 11111 11111 1 
5 11111 1111 
6 11111 1111 
7 11111 11111 
8 1 
9  
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Table 3. Statistics for the Number of Correct Answers on True False Tests  
50 trials of 10 Questions 20 Questions 40 Questions 
Mean no. correct 4.9 10.2 19.8 
Standard deviation 1.69 2.35 3.36 
Median 5 10 20 
Interquartile range 2 3 4 
Prob score >60% 40% 28% 14% 
 

In all three simulations, the mean and the medians were near or at 50% correct. Students 
should notice, however, that as the number of questions increases, the distribution becomes more 
“stable”. The variability measured by standard deviation and interquartile range decreased 
proportionally; for example, the interquartile ranges went from 1.7 out of 10 or 17% of the total 
range to 2.4 out of 20 or 12% to 3.4 out of 40 or 8.5% of the total range. 

 
ANTIBIOTICS AND E-COLI 
“Antibiotics can worsen E-coli complications.”  

According to a study from the University of Washington School of Medicine (Wong et al, 
2000), children who may be infected with the bacteria E-coli 0157: H7 should not be treated with 
antibiotics because they raise the risk of a potentially deadly complication called hemolytic 
uremic syndrome (HUS). Researchers looked at 71 children with E-coli poisoning, nine of whom 
were treated with antibiotics. Of the nine, five developed HUS. Among the remaining 62, five 
developed HUS. Do the data support the headlines? 

One approach to analyzing the problem is to consider the extreme cases. If there were 
strong evidence of a relationship between taking antibiotics and contacting HUS, all of those 
taking antibiotics would contact HUS (Table 4).  
 
Table 4. Strong evidence relating antibiotics and HUS 
 Antibiotics No Antibiotics Total 
HUS 9 1 10 
No HUS 0 61 61 
Total 9 62 71 
 
The other extreme would be to have none of those who received antibiotics contact HUS (Table 
5). 
 
Table 5. No evidence relating antibiotics and HUS 
 Antibiotics No Antibiotics Total 
HUS 0 10 10 
No HUS 9 52 61 
Total 9 62 71 
 

If the relationship between taking antibiotics and contacting HUS was random, you would 
expect about the same effect for those taking antibiotics and for those not taking antibiotics. That 
is, the proportion of those taking antibiotics and contacting HUS would be the same as the 
proportion of those who did not take antibiotics yet contacted HUS (Table 6). 
 
Table 6.  Expected relation between antibiotics and HUS due to chance 
 Antibiotics No Antibiotics Total 
HUS 1.3 8.7 10 
No HUS 7.7 53.3 61 
Total 9 62 71 

If all nine of those with E-coli who took antibiotics contacted HUS, some connection 
would seem to exist between taking antibiotics and contacting HUS. If none of the children who 
took antibiotics contacted HUS, there would be no reason to suspect a relationship. If the 
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connection between antibiotics and HUS were random, you would expect one or two of the 
children who took antibiotics would have contacted HUDS (9 is to 71 as x is to 10). Students may 
have difficulty, however, when the evidence about taking antibiotics falls into a ‘gray area’. Table 
7 displays the original data. 
 
Table 7.  E-Coli Study on the Relation of Antibiotics and HUS 
 Antibiotics No Antibiotics Total 
HUS 5 5 10 
No HUS 4 57 61 
Total 9 62 71 

 

Of the nine who took antibiotics, how likely is it that five of them would contact HUS 
when you expect one or two? In such cases, the relationship between antibiotics and HUS is not 
clearly obvious without further investigation.  How would the number of E-Coli patients taking 
antibiotics who contacted HUS vary just by chance? 

A bar graph (Figure 3) comparing those who contacted HUS and those who did not in the 
two categories, antibiotics and no antibiotics, can picture whether it is reasonable to suspect that a 
relation might exist.  
 

The situation can be simulated by using two 
colors of marbles: ten black marbles to 
represent those with HUS and 61 red to 
represent those with no HUS. The structure 
of this simulation is based on the fact that 
10 out of the 71 of those with E-coli 
contacted HUS while 61 of those with E-
coli did not. That is, the row and column 
totals from the table are fixed. Count out 9 
marbles for those who received antibiotics  

                            Figure 3.                                            
 

and count the number of black; count the number of black; for example, if three are black, then 
three of the children contacted HUS. The simulated counts generated by the chance process will 
produce a sampling distribution of counts for those who had antibiotics and contacted HUS. The 
observed number of patients for whom this happened (5) can then be compared to the sampling 
distribution produced by the simulation. In the sampling distribution of 50 simulations pictured in 
Figure 4, 5 did not occur at all. 

 

The evidence seems to 
support the claim that 
contacting HUS was not due 
to chance. Because the 
observed number of those 
taking antibiotics who also 
contacted HUS was very 
unlikely to occur by chance, 
the data do seem to support 
the headlines. 

Figure 4. 
 

Questions about the design of the study itself, however, might be raised and are important to 
consider before making any real claims about the validity of the conclusions. 

 
CONCLUSION 
 Research indicates that students need to see that they are learning something useful and 
relevant and are motivated when they can use the information they learn to do something that will 
have an effect on others (McCombs, 1996; Pintrich & Schunk, 1996). Students learn when they 
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are actively involved in choosing and evaluating strategies, considering assumptions, and 
receiving feedback. They often fail to connect everyday knowledge to subjects taught in school 
(NRC, 1999). The problems above give students these opportunities. The paper did not explicitly 
explore the mathematics necessary to carry out the work in analyzing the three problems, but it is 
considerable and includes manipulating formulas, working with symbols, creating models, 
making and interpreting graphs. Exploring problems such as these makes mathematics and 
statistics come alive. The work supports the research by illustrating that statistical reasoning can 
be a powerful tool in making sense of real problems. 
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