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The studies we present investigate elementary students’ reasoning about distributions in two 
contexts: (a) measurement and (b) naturally occurring variation. We first summarize an 
investigation in which fourth-graders measured the heights of a variety of objects and 
phenomena, including the school’s flagpole, a pencil, and several launches of model rockets. 
Students noted that the measurements were distributed and that sources of error corresponded to 
differences in qualities of distribution, especially spread. Next, students investigated the 
distributions of measurements of height for rockets of different design, to learn whether and how 
they could be confident that rockets with rounded nose cones “really” went higher than those 
with pointed nose cones. We then turn to the naturally-occurring variation context, in which these 
same students (now fifth-graders) studied the growth of Wisconsin Fast Plants™, fast-growing 
members of the Brassica family that enable multiple cycles of classroom observation and 
experiment within a school year (life cycle is about 40 days). We recount how students became 
adept at using changing shapes of distributions to support plausible accounts of growth 
processes. Questions about what would be likely to happen “if we grew them again” motivated 
investigations of sampling, which, in turn, suggested choices of statistics to represent a sample 
distribution. Finally, students invented means for considering how one might know whether two 
different distributions of measures could reasonably be considered “really different.” 
 
INTRODUCTION 

However one classifies objects and events, their variability is at least as important as their 
similarity, yet variability is given very short shrift in school instruction—students are given few, 
if any conceptual tools to reason about variability. Typically, these tools consist only of brief 
exposure to a few statistics (e.g., for calculating the mean or standard deviation). In contrast, we 
focus on data modeling (Lehrer & Romberg, 1996). Students typically participate in contexts that 
encourage them to develop questions, consider qualities of measures and attributes relevant to 
their question, and then go on to structure data and make inferences. Within the scope of data 
modeling, distribution affords an organizing conceptual structure for thinking about variability,  

Accordingly, we conducted a teaching study that spanned two years with a single intact 
class and teacher. We began in the spring school semester with fourth-graders (much of this work 
was conducted by our colleague, Anthony Petrosino; cited in Petrosino, Lehrer, & Schauble, in 
press) and then the following spring semester, continued with many of the same students. Both 
studies encompassed approximately eight weeks of daily instruction lasting an hour to an hour 
and a half, and concluded at the end of the semester with individual interviews of participating 
students. The fourth grade study involved a series of tasks and tools aimed at helping students 
consider error as distributed and as potentially arising from multiple sources. Distribution was 
structured in this context as an account of the “true” value of clusters of measurements and their 
associated error. In the fifth grade, we switched our focus to naturally occurring variation. 
Students studied the growth of Wisconsin Fast Plants™ and characterized growth as change in 
the shape of distributions of measurements. Thus, the studies follow the historical evolution of 
ideas about distribution (Konold & Pollatsek, in press; Porter, 1986; Stigler, 1986).  
 
METHOD 

The teacher, Mark Rohlfing, worked with us to engage in coordinated cycles of (1) 
planning and implementing instruction and (2) studying the forms of student thinking—including 
both barriers and resources—that emerged in the classroom. These two forms of activity were 
concurrent and coordinated; the development of student thinking was conducted in the context of 
particular forms of instruction, and instructional planning was continually informed by and 
locally contingent upon what we were learning about student thinking. Twenty-two students (12 
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boys, 10 girls) participated as part of a school-wide reform initiative for teaching and learning of 
mathematics and science (Lehrer & Schauble, 2000). The teacher had 11 years of teaching 
experience at the time of this study, but neither the students nor the teacher had previous 
experience with the forms of mathematics and science that were pursued. The major sources of 
data were field notes, classroom videotapes, the inscriptions of data that students created during 
the study, and transcriptions of the concluding interviews. 
 
DISTRIBUTION: A RESOURCE FOR UNDERSTANDING ERROR 

Classroom Instruction: First, we review the series of tasks that we designed to help 
students consider error as distributed and as potentially arising from multiple sources. In the 
context of these tasks, students reasoned about potential sources and mechanisms that might 
produce variability in light of the structure in the variation that they observed. Sources of random 
error included individual differences among measurers, instrument variation, and replication 
variation. To distinguish between random and systematic variation, students conducted 
experiments on the design of rockets (rounded vs. pointed nose cones). The purpose was to 
determine whether differences between the resulting distributions of rocket heights (obtained with 
round vs. pointed nose cones) were consistent with random variation, or if the differences could 
be attributed to the design of the rockets.  

To make characteristics of center and spread of distribution salient, instruction began 
with students measuring the height of their school’s flagpole using a hand-made, paper “height-o-
meter.” We expected that students would readily agree that the flagpole had a “true” height and 
therefore, the center of the distribution might be interpreted as its approximate measure. Second, 
the make-shift nature of the instruments might inspire ideas about why one might expect some 
measurements above and below the actual height of the flagpole. Symmetry in measure could 
then serve as a potential explanation for symmetries in the shape of the distribution of 
measurements. Third, we hoped it would occur to students to group similar values of 
measurements, thus introducing the important mathematical idea of a distribution as the function 
of the density of the number of observations within particular intervals.  

The measurements that students recorded ranged from 6.2 m to 15.5 m, with a median 
value of 9.7 m. Mr. R challenged students to arrange the measures to show “your best sense of 
how you would organize this.” As expected, students’ displays of these data varied, providing 
them an opportunity to understand how different representational choices made aspects of the 
data more and less visible. Mr. R used these displays to provoke consideration of the idea of 
interval, extreme values, and the possibility that perhaps not all the measurements were equally 
likely. As students discussed their confidence in the measures, they began to argue that more 
central values were the ones that seemed most trustworthy. Most students argued that more 
measurements within an interval were an indication that the actual flagpole height was 
somewhere in that bin, and that the true height was less likely to be in bins with fewer cases. 
However, others argued for considering a middle region that encompassed the middle intervals. 
Students felt that this middle region resulted from the measurement process itself, which would 
create values “a little over” and “a little under,” and that extreme values represented being “a lot 
over or under.” 

To accentuate relationships between measurement error and the resulting characteristics 
of distribution, students next used a ruler to measure a regular No. 2 pencil. When asked to 
compare the relative precision of the flagpole and pencil measurements, students gestured with 
their hands to indicate the relative compactness of the intervals in each display. Mr. R pressed 
students to consider how much more precise each measurer was in the pencil context, as 
compared to the flagpole context. A researcher used the metaphor of a difference as “the distance 
and direction you have to travel” from the center of the distribution to the value in question. 
Students worked in groups to calculate distances from the median for the flagpole and pencil 
measurements and “binned” their differences. The resulting distributions of difference scores 
recapitulated the sense of relative compactness observed in the original measures, with students 
noting that the flagpole differences were “much more spread out.” The notion of “typical” spread 
was introduced as the median of the distribution of differences. Students went on to measure the 
height of the flagpole with a plastic instrument and found that their measurements were far less 
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variable than those collected with the paper “height-o-meter. This finding led to attempts to 
catalog contributions to error, including “human” error (i.e., “hand movement”), method 
variation, instrument precision, and qualities of the object itself (e.g. being able to grasp the 
pencil, but not the flagpole). 

The concluding phase of instruction emphasized an experiment as a contrast between two 
distributions of values. Students first deployed three launches of a model rocket with a rounded 
nose cone. They used their plastic tools to record the apex of the rockets for each trial. These 
launches set the stage for considering individual difference and trial variation as components of 
error. Next students conducted “experimental” launches with a pointed nose cone, expecting that 
these would “cut through” the air and reach higher altitudes. Finally, they compared the resulting 
distributions to decide whether or not rockets with rounded or pointed nose cones would reliably 
go higher. This comparison was structured by their teacher by constructing a reference 
distribution of rounded nose cones, partitioned into thirds by the median and spread number. 
Thus, one interval included all cases below the median and spread number, the next encompassed 
the median with the lower and upper bounds determined by the spread number, and the third 
included the remaining cases above the median and spread number. Students were surprised to 
find that 86% of the measurements of rocket altitude obtained from pointed nose cone launches 
fell into the lowest interval of the reference distribution.  

Assessment of Student Learning: At the completion of instruction, students completed 
two forms of assessment. First, all students completed a group-administered paper and pencil test 
consisting of two released items from the 1997 National Assessment of Educational Progress, 
designed for students at Grade 4. These items assessed students’ capabilities to compare tables 
and to read and interpret pictographs. In addition, we conducted individual clinical interviews of 
about 30 minutes each with 15 of the students to assess strategies for reasoning about the 
probable goal of an experiment given the data, comparing distributions of unequal numbers, and 
reasoning about measurement variability. We report some of these results.  

Reasoning about Experiment: The first interview item was adapted from research 
conducted with middle school students (Petrosino, et al., in press). Participants reviewed a table 
of data and attempted to infer the likely purpose of the experiment that motivated the data 
collection. All 15 interviewees produced a plausible response about the likely purpose of the 
experiment. However, they volunteered that the data were not sufficient to support a definitive 
conclusion. Students pointed out that the distributions presented for comparison overlapped 
substantially, and that there were too few data points to be confident that the distributions really 
differed. Several students spontaneously made reference to “what we did in class with the 
medians and spread numbers.” Students suggested comparing the medians of the two 
distributions, eliminating outliers, or obtaining additional data. In Petrosino’s previous research, 
middle school students had rated themselves “very confident” that the data in the table supported 
a definitive conclusion.  

Measurement Precision and Variability: During instruction, students had measured the 
school’s flagpole with both a paper measuring device and a plastic altimeter. Interviewees were 
asked to predict the measurements that might be obtained by a fictional class of 15 children who 
measured the height of a 100-ft statue, if the class measured first with one instrument and then 
with the other. Specifically, students were asked to construct the distributions that might result. 
As one would find if the paper tool were less precise, student-generated distributions were 
notably less variable for the pooled distribution of student-generated altimeter measurements 
(SD=13.9) than for the paper tool (SD=26.7). As anticipated, students’ distributions were roughly 
symmetric. 
 
DISTRIBUTION: A RESOURCE FOR UNDERSTANDING NATURAL VARIATION 

Students posed and investigated a series of questions about the growth of Wisconsin Fast 
Plants™, members of the brassica family that have a life cycle of about 40 days, and thus support 
multiple cycles of classroom observation and experiment with a year. The investigations entailed 
posing fruitful questions, identifying and defining attributes that could be recorded over time 
(plant height, width, number of leaves, seedpods, etc.), and agreeing on common procedures for 
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measuring these attributes. Characterizing changes in the plants required students to compare 
distributions of measures (on each day of growth, measurements were taken for 63 plants).  

On day 23 of the plants’ growth, Mr. R collated the class’s measurements of their plants 
and asked students to work in their groups to agree about what would serve as a “typical height” 
for a Fast Plant at this point in the life cycle. Although most readily accepted this proposal, a few 
students objected strenuously, insisting that since there were plants at each of several heights, all 
heights were “equally typical.” Thus, when the idea of a “true measure” was not present to 
support ideas about center, some students had difficulties making the shift from thinking about 
particular cases (i.e., plants) to thinking about a value that could “stand in” for the collection (the 
entire set of plants). Over time, as we focused students on the “shape of the data,” the class 
increasingly made this shift. 

Discussions about the shape of the data usually started with consideration of “clumps,” 
“holes,” and typical values of the distribution, and progressed to ways of picturing “the shape of 
the distribution” on different days of growth. Early on, Mr. R asked students to agree on a way to 
represent the height data two distributions of plants to “show what’s typical and also how spread 
out the measurements are.” Students invented several ways of doing so, from simple ordered lists 
to case magnitude displays to hybrids of frequency graphs and stem-and-leaf displays. By 
swapping and interpreting their displays, students came to understand various senses of the 
“shape” of the data. These discussions were punctuated by debates about the forms of 
representation that best supported arguments about “what’s typical” and “how spread out.” 
Students summarized the shape of the data by recourse to indicators of center and spread, which 
were constituted as they investigated the effects of different partitions of the distribution on the 
resulting shape. Choices of statistics to represent a sample distribution were motivated by 
extended investigations of sampling. Students investigated what would be likely to happen “if we 
grew them again” by exploring distributions of samples of differing number and size. These 
sampling studies began by recording measurements of plant height on small cards, putting them 
into large envelopes, and drawing out samples of different size. They were eventually extended to 
work with a computer tool, which allowed flexible exploration and representation of the effects of 
varying the sampling plan. These investigations revealed some statistics were much less robust 
than others as indicators of typicality and variability. Understanding of shape was extended as 
students played “Make My Distribution,” a game in which groups constructed distributions that 
fit specified constraints (median, range) and shapes (e.g., normal, skewed, uni- and bimodal). 
Eventually, students segmented distributions into quartiles and generated box plots consisting of 
what they called “hinges” and “doors” and compared the density of measures within comparable 
intervals. Students became reasonably adept at using changing shapes of distributions to support 
plausible accounts of growth processes, for example, why one would be likely to see a left-
skewed distribution during the earliest days of growth, and why the center of the distribution 
would shift to the right as the plants’ life cycle continued. 

The semester culminated with studies of the effects of growth factors (light and fertilizer) 
on plant growth. Students compared distributions of plants grown under different conditions. 
Initially, they parsed the distributions of measures (initially, with respect to cut-points, then, with 
box plots) and comparing segments. For example: “Half of the high-light plants are taller than 15 
mm on day 28, but only one third of the low-light plants grew that tall,” or, “The upper hinge for 
the high-fertilizer plants is 17 mm, which is very close to 16.8, the upper hinge for the low-
fertilizer plants.” Finally, students considered how one might be confident that two distributions 
of measures could be considered “really different.” They did this by comparing two distributions 
of plants grown under differing conditions and considering the degree of their separation in light 
of the variability one might reasonably expect “if we grew them again.” 

Assessment of Student Learning: At the conclusion of instruction, all students participated 
individually in a one-hour interview.  

Shape, sampling. Children were presented with displays of two curves, one after the 
other. Both were labeled 20 mm at the left tail and 80 mm at the right tail, but the first was a 
normal curve and the second was skewed. The curves were described as the measurements of 
height taken on one day of the life cycle of a population of grass plants. For each curve in turn, 
students were asked, “Suppose we picked 23 of these plants by chance—we put them into a hat 
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and randomly picked out any 23. What would the overall shape of this new group of 23 look 
like?” Students were asked first to sketch the curve representing the likely shape of the sample of 
23, and then to construct the sample by selecting values from a set of 1-inch, labeled with values. 
Over 85% of students drew curves that were similar in shape to the “parent.” Moreover, 
approximately one third truncated the tails to indicate that there would be a smaller chance of 
choosing the measures least frequently represented in the distribution. A large majority of the 
students justified their sketch by talking about the roles of both chance and structure. When asked 
to construct a distribution using the supplied values, all students constructed a shape similar to 
that of the parent, and a third truncated the tails. Moreover, 85-90% of the participants explicitly 
pointed out that the shape of the sample would be likely to, but need not necessarily mimic the 
shape of the population. 

Distribution as signature of growth. The next pair of items also concerned displays of a 
skewed curve and a normal curve. For each display in turn, students were asked, “When we grew 
our Fast Plants, what day or days did the distribution of plants have a shape that sort of looked 
like this one?” Students were also asked to “tell a story that explains why the distribution might 
have had that kind of shape.” Over 70% of the students replied that the left-skewed curve 
represented the distribution of plant heights at the beginning of their life cycle. Although 20% 
justified this choice by appealing to empirical memory (that’s the way they looked), most of the 
children proposed causal factors that might account for the observed shape, for example, the role 
of growth factors to account for variability (e.g., plants received varying amounts of light) or 
limits of growth as a reason for the observed shape of the curve (“They can’t get any smaller than 
zero mm,” or, “They all start out the same size.”). Similarly, 94% identified the normal curve as 
the way the distribution looked when the plants were in the middle of their life cycle.  

Comparing distributions. Students observed two stem-and-leaf displays representing 
distributions of “battery life” (that is, number of hours that a collection of batteries functioned 
before failing) for a set of batteries made “the usual way” and another set (of unequal number) 
made “a new way.” They were asked which way of making batteries resulted in batteries that 
lasted longer.  

Eighty percent of the students volunteered three or more characteristics of the 
distributions that supported their conclusion (20% mentioned only one). One quarter compared 
either the highest or lowest case values of the two distributions, but it was the sole justification 
offered by only two. The remaining children also mentioned a variety of more sophisticated 
justifications. These included: identifying a “clump” of values in one distribution that was not 
included in the other (13%), making qualitative reference to the location of “most of” the high or 
low values in one distribution or the other (11%), locating a value or “clump” from one 
distribution within the other (12%), comparing the medians of the distributions (20%), or 
mentioning the proportion or fraction of separation or overlap of the two distributions (7%). Two 
thirds of the students applied a sampling-like approach to comparing the distributions. That is, 
they referred to qualities of center, spread, and overlap of the two distributions to argue that the 
result would be likely to come out “the same way” if the test were run again or run with 
additional batteries. Most noted that some variation from the original results should be expected, 
and that it was therefore not possible to conclude with 100% certainty that the results would 
support the same conclusion. Regardless, given the qualities of the distributions under 
consideration, students felt reasonably confident that additional testing would be unlikely to yield 
a different result. 
 
DISCUSSION 

In the history of mathematics, it was difficult to negotiate the shift from reasoning about 
variability in the context of measure to mathematically conceptualizing variability that occurred 
naturally (Porter, 1986). Similarly, there were challenges in this shift that students needed to 
negotiate. First, the very idea that it was admissible to identify a typical value to stand for all the 
cases in a naturally varying set seemed foreign to some students. In contrast, it seemed readily 
evident to students in the context of measure that items necessarily have a “true height” and that 
that height could be estimated by finding the center of a set of measurements. However, with a set 
of plants, every height seemed equally “true.” The key to negotiating this shift appeared to be a 
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dual focus on shape and on the idea of repeating the process of growth (e.g., “What would happen 
if we grew them again?”) Students used distributions to make claims about growth processes, 
anchored to ideas about plausible biological mechanisms and functions (growth spurts, 
appearance of buds and seed pods, etc.). We found it particularly useful to encourage students to 
invent ways of describing and representing data, and then to recruit those representations to 
support arguments about biological mechanisms.  
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