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We consider the role of technology in learning concepts of modeling univariate functional 
dependencies. It is argued that simple scatter plot smoothers for univariate regression problems 
are intuitive concepts that- beyond their intended usefulness in providing a possible answer to 
more intricate regression problem - may serve as a paradigm for statistical thinking, detecting 
structure in noisy data. Simulation may play a decisive role in understanding the underlying 
concepts and acquiring insight into the relationship between structural and random variation. 
 
INTRODUCTION 
 Dynamic and interactive software together with the computing power of today’s 
accessible hardware illuminate key concepts of statistics and encourage an exploratory and 
activity-based working style in analyzing real data, including the creation of self-constructed 
methods of data representation and analysis and evaluating these by simulations. In our project 
Statistical Thinking and Stochastic Modeling in Computer Supported Environments, implemented 
in courses for teacher students in mathematics at the Universities of Ludwigsburg and Hannover, 
we investigated the didactical efficacy of various software environments including Fathom, S-
Plus and Lisp-Stat on student learning of statistical concepts (Engel, 2002). In this paper we focus 
on one particular content of that project and its potential for enhancing statistical thinking: 
modeling functional dependencies in stochastic situations.  
 “Statistical thinking is concerned with learning and decision making under uncertainty. 
Much of that uncertainty stems from omnipresent variation. Statistical thinking emphasizes the 
importance of variation for the purpose of explanation, prediction and control” (Wild and 
Pfannkuch, 1999). Variation is the reason why sophisticated statistical methods were devised to 
filter out messages in data from the surrounding noise. A core concept of modeling statistical data 
is what Borovcnik (2004) calls the structural equation which represents data as decomposed into a 
signal to be recovered and noise. 
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While the signal comprises controlled or explained causes why data vary, the noise contains the 
unexplained variation, usually modeled as a random quantity with expectation 0.  
 
ON MODELING SCATTERPLOT DATA 

Starting point for investigating functional relationships between two empirical variables 
is the collection of n pairs of measurements (x1, y1), …, (xn, yn) represented in a scatter plot. The 
objective of the modeling process is to derive a function f expressing the dependence of the two 
variables either through a functional term of the form y = f (x) or as a function graph. A simple 
graph or functional equation y = f (x) representing the data cloud is an efficient compression of 
the data which is easy to communicate to others and easier to interpret and compare with other 
graphs than the complete original data set. As for any type of mathematical model, the obtained 
representation may play a decisive role in understanding the dynamics driving the observed 
phenomena, predicting new data and, possibly, forming the basis for effective intervention. Many 
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excellent instructive examples for modeling functional dependencies, to be worked out with 
Fathom, can be found in Erickson (2005). 
 In many situations, the simplest way to derive a graph from a scatter plot (xi, yi), i = 1, …, 
n is through interpolation. Connecting the data with straight lines, interpolating polynomials or 
cubic spline functions results in curves that may well help at discerning possible trends in 
observations. Any type of interpolation is certainly appropriate when the observations represent 
error free measurements of the variables of interest, i.e., if yi = f (xi) holds exactly. However, in all 
empirical situations the observations are subject to measurements errors, sampling errors or other 
disturbances (“noise”), attributed to lurking variables that cannot be measured, controlled or – if 
for no other reason than model simplicity– are not explicitly included. Recognizing that variables 
in empirical studies are usually disturbed by measurement and sampling errors leads to include 
random components into the model. The most common approach– in line with Borovcnik’s 
representation – is to decompose the observations additively into iii xfy ε+= )( , where the 
model function f represents the trend or signal and iε  is noise.  
 
NONLINEAR DATA 

The approach of curve fitting is based on the assumption that the unknown function 
),()( θxfxf =  belongs to a pre-specified or known class of functions characterized by a finite 

dimensional parameter θ  (e.g. linear, exponential, logistic function). Then the objective is to 
determine that value of the unknown parameter such that the model function fits the data best. In 
the linear case the answer is standard, leading under the objective of minimizing the sum of 
squared errors to the formulae for OLS linear regression. But obviously, life is not always linear. 
Restricting yourself to linear regression then leads to a narrow mindset that not only cuts the 
learner off from many interesting problems, but also may impede appreciation and interpretation 
of linear regression itself. 
 One standard approach to data sets with nonlinear structure is to linearize the data by a 
suitable transformation. As an example we consider data obtained by heating different amounts of 
water for 30 seconds in a microwave oven observing the temperature increase (Erickson, 2005). A 
log transform of both x and y variable renders a linear structure leading after a back transform of 
the OLS fit to a model for the original data (see Figure 1). Transforming data with the purpose of 
creating linear structures is quite an instructive task that can easily implemented in most statistical 
packages. Dynamic software like Fathom is here particularly advantageous in situations where a 
suitable transformation depends on a yet unknown parameter. The software then allows choosing 
this parameter interactively while the effects of this choice can be observed dynamically in a 
scatter plot of the transformed data. By eyeball analysis, while the slider representing the 
unknown parameter is changed, a satisfactory linear structure may be obtained.  
 Most non-linear models used in intro stats classes can be transformed to linear and fit by 
ordinary least squares with the notable exception of periodic functions. Tidal patterns, sunrise 
times, data depending highly on the time of the day or the season of the year may not be modeled 
this way, because periodic structures cannot monotonically be transformed into linear. Then 
instead of the transform-back-transform approach one may try to minimize an outside criterion 
like OLS directly. Just as in the case of linear regression, the objective now is to find a value for 
the parameter θ  minimizing [ ]∑ =− θθ min),( 2

ii xfy . For this general set-up Numerical 

Analysis offers sophisticated algorithms like Gauss-Newton. Insightful use of these algorithms 
asks for expertise (numerical stability, choice of pilot estimators, ...), that students barely won't 
have before attending graduate level classes in mathematics or statistics. Implementing these 
ideas is in the domain of the professional statistician’s software like R, S-Plus or Lisp-Stat etc.  

Nevertheless, in problems with a low-dimensional parameter θ we may approximate 
optimal parameters by trial and error, using software for illustration. However, feasibility is one 
important aspect, appropriateness a different issue. In stochastic modeling we always model both, 
signal AND noise, structure AND random deviation. Following the common (but by no means 
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Figure 1: Microwave oven data. Linear fit after a log transformation (left), original data with a fitted curve 

obtained through back-transforming the linear function (right) 
 
exclusive) approach of an additive decomposition of the data into structure and noise, there is still 
a lot of freedom in how to model noise. The simplest situation is based on the assumption that 

iii xfy εθ += ),( , where the noise ε  is modeled as independent random variables with expected 
value 0 and a constant variance of 2σ independent from x, while in more complex situations, for 
example, the error terms may be stochastically dependent or the variance of ε  varies with the 
value of x. Also, additivity in linking structure and noise is most common if only for the sake of 
simplicity. Specifying how structure and noise are connected is just part of the model, and the 
choice of a suitable model depends on the context of the data. In standard regression, the 
assumption is additive homogeneous noise. However, when transforming, we change this 
assumption. As an example, consider again the Microwave data. The model function for the 
original data in Figure 1 has been obtained after a linear regression of the log transformed data. 
Implicitly, we assumed iii bxay ε++= )log()log( . This model corresponds to a multiplicative 
error model for the original data specified as ( )i

a
ii

a
ii xxy εβεβ +⋅≈⋅⋅= 1)exp(  with )exp(b=β . 

This means that we now have indeed specified a heteroscedastic model with non-constant error 

variance of [ ] ).var(
2

i
a

ix εβ ⋅  From a statistical point of view, it is important to make explicit that 
OLS is good only under assumptions. And when we transform models, we not only change 
assumptions about the trend, but also about the random deviations from the trend.  
 
SIMULATION 

Simulation may serve here as a very helpful teaching strategy to illustrate the differences 
of the two underlying concepts. We generated data according to i

a
ii xby ε+⋅=  and ia

ii xbz ε+⋅= . 
While the y-Data are custom tailored for direct OLS minimization, the z-Data are in fact 
heteroscedastic and have constant error variance exactly after a log-transform. Therefore, 
pursuing the linearization with the y-data is just as inappropriate as applying a direct OLS 
minimization via Gauss-Newton for the z-Data, see Figure 2. 
 
BASIC CONCEPTS OF DATA SMOOTHING 
 The problem with fitting curves from a parametric family is that their derivation may be 
guided by intuition and experience from the field of application, but it often lacks an objective 
justification. Quite often one may have no idea at all which type of functions might be suitable to 
model the data at hand. Using the wrong parametric model then leads to misspecifications. This 
drawback calls for methods with more flexibility because the assumption of a parametric 
functional class becomes a “straight jacket” imposing a given structure on the data or excluding 
possibly existing data structure by assumptions – a contradiction to the principles of exploratory 
data analysis and a discovery-oriented approach to learning. 
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Figure 2: Simulated data with the signal f(x) = x3/2.. The added noise in the left frame is homoscedastic, 
rendering the data suitable for direct OLS, while the noise in the right is chosen such that the data are 

suitable for a log-transform. Notice their heteroscedasticity. 

 
 Computationally intensive smoothing methods that allow the derivation of a model curve 
with a minimum of a-priori specifications, have been around for several decades now and are 
implemented in most professional software packages including R, S-Plus and Lisp-Stat. Some go 
by fancy names like local polynomial approximation, kernel estimation, wavelet regression, 
smoothing splines etc., but their underlying idea is simple and intuitive (Weldon, 2002). For a 
comprehensive view, see e.g., Simonoff (1996). The most easily accessible approach may be the 
regressogram, where the sample space is sliced into cells - just like for a histogram in case of 
univariate data - and the average of the y-values is calculated within these cells. The next step is a 
“moving regressogram” or running mean, i.e., the cell or smoothing interval is centered round the 
point x of estimation. Then x is pulled over an input grid of the sample space. The result is a 
moving average, still a ragged curve. Introducing smoothly weighted moving averages (like 
Epanechnikov weights) leads immediately to smoother results which are mathematically and 
aesthetically more satisfying. Finally, while the moving average can be considered as a “locally 
constant” estimator (within the smoothing interval centered round x we fit the cell mean as 
functional value), we may also consider a local linear estimator (fitting a linear model within the 
smoothing interval). These remarks indicate that starting from the intuitive regressogram climbing 
upwards to gradually higher levels of sophistication is straightforward. However, the genuine 
purpose of teaching elementary concepts of smoothing should not originate in the strive to 
introduce recent concepts of statistical methodology into the introductory statistics classroom– 
a rather questionable curricular orientation – but its contribution to promoting statistical thinking. 
 I am grateful to Cliff Konold for drawing my attention to TinkerPlots (Test release of 
version 2.0) and its implementation of basic smoothing ideas. Besides the moving average (as 
well as a moving median and midrange) TinkerPlots allows a polygon-type variant of the 
regressogram by connecting the midpoints of the regressogram with straight lines, a direct 
analogue to the frequency polygon as a refinement of the histogram for univariate data. Figure 3 
shows a scatter plot of the electricity usage data (Simonoff, 1996) in an all-electric home for 55 
months. Average daily electricity usage (in Kilowatt Hours) is plotted against average daily 
temperature (Degrees Fahrenheit).  
 A delicate question for any smoothing method is the choice of a smoothing parameter, 
here the window size or bandwidth. Automatic bandwidth choices based on some optimality 
criteria and sophisticated plug-in or cross-validation procedures are possible, but barely accessible 
except for the very advanced students. Moreover, for the purpose of promoting statistical 
thinking, an automatic choice is not even desirable. For exploratory purposes it suffices 
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completely to choose the window size by hand through a slider. Exploring with several window 
widths instills a sense of balancing out between recovering signal and suppressing noise. 
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Figure 3: Regresso-Polygon (left) and moving average curve. Notice that the moving average curve at the 
center of the shaded window is computed by averaging over all ordinate values within the window. 

 
For small bandwidths the resulting curve follows quite closely the ruggedness of the data while 
with larger bandwidths – just in the case of large bins of a histogram – the noise is averaged out 
and the result is a smooth curve. However, when the bandwidth is too large, structure in the data 
will be smeared out together with the noise. The bandwidth mediates between signal and random 
noise. Figure 4 shows different representations for the smoothed electrical usage data. 

 
 

Figure 4: Smoothed representation of the electrical usage data based on moving averages with different 
window sizes or bandwidths 

 
ROLE OF SIMULATION 

The discovery and specification of trends in bivariate data – discerned first through visual 
inspection, then through numerical considerations and the use of modern technology – forms an 
important part of the data analysis curriculum. When teaching about modeling scatter plot data I 
let my students first draw free-hand graphs, based on eyeball inspection of the data before 
introducing scatter plot smoothers and curve fitting. Novices in probability and statistics tend to 
stick to a deterministic-mechanistic view of the world, which either doesn’t allow room for 
chance or knows only trend free randomness. When considering noisy observations in empirical 
data, the random part has to be separated from the deterministic trend. Here computer simulations 
offer the opportunity to develop and deepen a sense for random fluctuation in real data in order to 
focus on the relationship between systemic structure and random noise in data. underlying curve 
and thus explore the relationship between filtered systematic trend and residual noise Figure 5 
illustrates this effect of the bandwidth choice for a simulated data set, using a smoothly weighted 
moving average. Figure 5 illustrates the effect of the bandwidth for a simulated data set, using a 
smoothly weighted moving average. In the oversmoothed fit the structure of the main peak is 
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distorted while the small peak is almost lost. The undersmoothed fit shows too much variability 
and a number of random peaks. 

 

 
Figure 5: Simulated data with true regression function (left above), an undersmoothed fit to the data (right 

above), an oversmoothed fit (right below) and an adequately smoothed fit (left below). 
 
CONCLUSION 
 When modeling scatter plot data students often find it difficult to give the resulting curve 
a proper interpretation. With some time series data students may be tempted to interpolate while 
with other data the imposed functional structure may be questionable. A quick introduction of 
technical concepts like least-squares regression coefficients followed by a model check 
afterwards through residual analysis draws attention away from the fact that scatter plot 
modeling–like any statistical activity–represents an attempt to detect structural information from 
data corrupted by random noise. In contrast, a teaching approach that emphasizes exploring how 
much of the variation in the data is random and how much is due to structure focuses on concepts, 
interpretation and understanding rather than on mathematical formulae. Technology supported 
elementary smoothing – in contrast to classical regression teaching - offers here the opportunity to 
address directly the issue of detecting trends in the presence of random variation. This approach is 
not only exploratory but also addresses explicitly the quest for systematic structure in noisy data. 
It challenges students to express and discuss their ideas, whose initial concept may range from 
data interpolation to a global average. 
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