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In college courses that use group work to aid learning and evaluation, class groups are often 
selected randomly or by allowing students to organize groups themselves.  This article describes 
how to control some aspect of the group structure, such as increasing schedule compatibility 
within groups, by forming the groups using multidimensional scaling.  Applying this method in an 
undergraduate statistics course has resulted in groups that have been more homogeneous with 
respect to student schedules than groups selected randomly.  For example, correlations between 
student schedules increased from a mean of 0.29 before grouping to a within-group mean of 0.50.  
Further, the exercise motivates class discussion of a number of statistical concepts, including 
surveys, association measures, multidimensional scaling, and statistical graphics. 
 
INTRODUCTION 

I have found the use of group work in my undergraduate statistics course to be a useful 
method for improving student learning by raising student interest and increasing class 
participation.  As well as working together during class time, students work extensively together 
in groups outside of class on homework assignments and projects.  In managing groups of 3-5 
students in a class of approximately 60, I have experimented with various unsatisfactory methods 
for selecting the groups.  For example, randomly selecting groups has lead to student complaints 
about difficulties meeting as a group outside of class time due to incompatible schedules.  On the 
other hand, allowing students to self-select groups has tended to produce groups of friends in 
which there is very little diversity (gender, age, and ethnicity, as well as academic ability).  To 
address this, I have developed a method that uses multidimensional scaling (MDS) to select 
groups whose members have mostly similar schedules without compromising group diversity. 

The concept of cooperative learning involves groups of students working together as a 
team to solve a problem or complete an assignment (see Garfield (1993); and Keeler and 
Steinhorst (1995) for examples in the field of statistics).  Johnson, Johnson, and Smith (1991) 
showed that when students work together, they often accomplish more, and at a higher level, than 
they could individually.  Garfield (1993, par. 8) cited published research that suggests that “the 
use of small group learning activities leads to better group productivity, improved attitudes, and 
sometimes, increased achievement.”  In selecting cooperative learning groups, Garfield (1993, 
par. 18) noted that “the instructor may allow students to self-select groups or groups may be 
formed by the instructor to be either homogeneous or heterogeneous on particular characteristics 
(e.g., grouping together all students who received A’s on the last quiz, or mixing students with 
different majors).”  The remainder of this article describes how to use MDS to select groups to be 
homogeneous on student schedules.  The method also enables inclusion of further selection 
criteria, such as ensuring groups have at least one member with a particular skill.  The method is 
described in sufficient detail that it can be applied to any course with cooperative learning groups, 
and can be adapted to work with characteristics other than student schedules.  A more 
comprehensive version of the article which develops these ideas further is in Pardoe (2004). 

The next section briefly describes MDS and how it can be applied to group students with 
similar schedules.  The following section presents typical results and evaluates how well the 
method has worked in practice.  Implementing the method also provides valuable opportunities 
for covering a number of statistical concepts in class, including surveys, association measures, 
multidimensional scaling, and statistical graphics.  The final section contains concluding remarks. 
 
MULTIDIMENSIONAL SCALING FOR SELECTING GROUPS 

MDS allows a set of objects to be displayed in low-dimensional space (often 2D) to 
reflect similarities between the objects (see Kruskal and Wish, 1978, for an overview).  Physical 
distances between the objects on a 2D MDS map are optimized to correspond with measured 
object similarities. The input to the procedure, a matrix representing pairwise similarities between 
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the objects, can be obtained directly by eliciting explicit object similarities from survey 
respondents, or indirectly by calculating an association measure for the objects based on the 
values of object covariates.  For this application, the goal is to identify groups of students (the 
objects in question) with similar schedules, so I use the latter approach using calculated 
associations between students based on their schedules. 

A metric MDS analysis (Torgerson, 1958) uses interval or ratio scaled similarity 
measures, and an eigenvalue decomposition of (a transformation of) the matrix of similarity 
measures provides the map coordinate locations of each object.  Similar to a principal 
components analysis of a covariance matrix, the first eigenvector represents the first coordinate 
axis (with the largest variance in distances), the second eigenvector represents the second 
coordinate axis, and so on.  When, as is often the case, the first two eigenvalues account for the 
bulk of the distance variance, a 2D solution can map the objects effectively.  When the 
similarities are ordinal measures, a nonmetric MDS analysis (Shepard, 1962) places the objects 
on a map to preserve a monotonic relationship between observed similarities and map distances.  
A measure of badness of fit, or stress, summarizes how far a proposed solution is from the desired 
monotonic relationship, and a numerical algorithm iteratively adjusts the object coordinates to 
minimize the stress.  Metric and nonmetric MDS analyses thus operate on different data scales 
using different approaches to produce maps that effectively represent similarities between objects. 

Because it is possible to calculate a ratio-scaled measure of association between student 
schedules, a metric MDS approach is appropriate in this application.  The process begins with 
collecting schedule information using, for example, a pen and paper survey, e-mail with an 
attached spreadsheet to enter data, or an online survey.  In a statistics class there is clearly an 
opportunity here to engage the class in a discussion of data collection techniques and surveying.  
For the undergraduate statistics course that I teach, the students complete an online survey before 
the second class of the term.  I use WebSurveyor software (www.websurveyor.com) which makes 
this process particularly easy, resulting in a spreadsheet of student data.  I ask the students to 
“select the time periods when you absolutely cannot meet with your group because you are in 
class, work, or other scheduled activity for most or all of the period during the term.”  I use two-
hour time periods between 8:00 a.m. and 10:00 p.m. for all days including weekends – this seems 
to provide a reasonable compromise between survey burden and information quality.  The 
resulting spreadsheet records a row of zeros and ones for each student showing when they are 
available/unavailable to meet for group-work outside of class time.  This spreadsheet also records 
a unique identification number for each student, and binary indicators for whether a student self-
selects as “good with computers” and “good at analytical thinking.” 

Administering the survey and explaining its purpose provide opportunities for discussing 
statistical concepts in class, for example how to measure the similarity of one student’s schedule 
with another.  This naturally leads to the notion of an association measure, in this case for data 
that can be summarized in a two-by-two contingency table: the two row categories are the counts 
of the available/unavailable time periods for one student while the column categories do the same 
for another student.  For example, a typical table for a pair of students might contain the 
following: both students available, 27 periods; both unavailable, 6 periods; student A available 
but student B unavailable, 9 periods; B available but A unavailable, 7 periods.  One way to 
measure association in this table is to look at a scaled difference between concordant pairs of time 
periods (where students match and are both available or unavailable) and discordant pairs (where 
students do not match) – Kendall’s τb (Kendall, 1945) is one such quantity.  For two-by-two 
tables, Kendall’s τb is algebraically the same as the usual (Pearson product-moment) correlation 
between each student’s availabilities, and so this might usefully lead into a discussion of bivariate 
correlation in more general situations. 

Returning to the group formation task, statistical software can then be used to perform an 
MDS analysis.  I use SAS software, although many other common software packages could be 
used.  The SAS code used in this article is available at 
http://lcb1.uoregon.edu/ipardoe/research.htm. Output from the MDS procedure includes a 2D 
map where physical map distances between the students correspond to the similarities between 
their schedules.  Figure 1 provides an example of such a map for 58 students in an undergraduate 
statistics course that I taught recently. 
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Figure 1: Perceptual map showing students labeled by identification number and marked according to 

whether they have computing/analytical skills (circles: no, crosses: yes).  
 

All that remains is to use this map to determine the groups.  I have found that it is usually 
sufficient to print the map out, and then, by eye, delineate boundaries between groups such that 
there are four or five students in each group, and each group has at least one member claiming to 
have computing or analytical skills.  A more formal clustering technique might be used at this 
point – providing another opportunity to introduce a statistical concept into class – but I have 
found little need to venture beyond informally eyeballing the map. 
 
EVALUATION OF RESULTS 

Since the map in Figure 1 represents similarities between students’ schedules (to the 
degree that the MDS analysis has been successful at representing high-dimensional data in 2D 
space), using the map to select groups ought to produce more homogeneous groups than selecting 
groups randomly.  For example, I used the map to place students 6, 37, 46, and 51 together (see 
Figure 1) – their 6 within-group correlations ranged between 0.5 and 0.8, whereas the 1653 
correlations across the whole class went as low as −0.5.  To evaluate the success of the group 
selection process, I considered this question in more detail.  One way to do this (which also 
provides a useful lead-in to discussing graphical summaries in class) is to compare a histogram of 
schedule correlations for all pairs of students with a histogram of correlations within the final 
selected groups.  For the groups selected in the example above, the distribution of correlations 
shifts to the right, so within-group correlations tend to be higher (averaging 0.50) than 
correlations across the class as a whole (averaging 0.29).  There were relatively more within-
group correlations at the high-end of the scale, and so in the most homogeneous groups 
(comprised of very tightly clustered students in Figure 1), schedules matched remarkably well.  
However, while no within-group correlations were below −0.1, there were some students with 
schedules that matched few others in the class, making it difficult to place them in a 
homogeneous group.  For example, it would have been difficult to place student 28 in a 
homogeneous group – this student’s optimal group would have had a minimum correlation of 0.1, 
and they actually ended up in the group with the lowest within-group correlation of −0.1. 

This last issue motivates another discussion question for potential use in class – why not 
just try to find the optimal group for each student?  Apart from being extremely time consuming 
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(particularly as the class size grows), what is optimal for one student may not be optimal for 
another – for example, placing student 28 in their optimal group would have changed the group 
membership of a number of other groups and greatly reduced their homogeneity. 
 
CONCLUSION 

Randomly assigning students to small groups in college courses, or allowing students to 
self-select groups, can impact operational aspects, such as how well groups are able to schedule 
times to meet, as well as personal characteristics, such as student diversity within groups.  To 
avoid such problems, the process described in this article uses multidimensional scaling for 
selecting groups to increase scheduling homogeneity within groups without reducing diversity.  
The approach has worked successfully in practice and student feedback has been very favorable.  
In theory, within group diversity remains as high as for random group selection, although to the 
extent that “similar students” have similar schedules, this may not strictly hold in practice.  The 
approach can also take into account additional student characteristics, such as making sure each 
group contains at least one student with a particular skill.  The method as described uses Pearson 
correlations (equivalent to Kendall’s τb in this case) to calculate student schedule similarities, but 
it is possible to adapt the method to use alternative association measures, for example if it was 
desired to consider matches on times when students can meet as more important than matches on 
times when students cannot meet.  An added benefit, when applied to statistics courses, is that the 
approach offers many opportunities for exploring statistical concepts in class. 

I have focused on using the approach to enhance within-group schedules, but the 
approach is general enough to consider other characteristics too, such as student grades or majors 
(as mentioned by Garfield, 1993), or skills.  For example, suppose it is desired to form groups in 
which students have a wide variety of skills and competencies (such as analytical, writing, 
organizing, public speaking, leadership, computing, detail-oriented, good with “big-picture,” 
etc.).  Scores (from 1 to 10, say) on each of these skills can be obtained via a student survey, and 
then a metric MDS analysis can be based on pairwise correlations between student scores.  In this 
case, the goal would be to group students with negative correlations so that each group has a good 
mix of skills.  Thus, students with very different skills could benefit from being placed in the 
same group, while students with similar skills could benefit from being placed in different groups. 

The general approach involves some start-up costs.  These include: collecting the relevant 
information from students (for example, scheduling information provided through an online 
survey); analyzing the data (for example, using PROC MDS in SAS to create a map of students in 
which those close together have similar schedules and those far apart have very different 
schedules); using the map to select groups (for example, informally clustering the students by 
eye).  Once the survey and SAS code have been written however, it is easy to implement the 
approach for any class where homogeneous groups need to be formed. 
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