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The aim of the paper is to analyse the results of a performance test, created to evaluate how well 
a group of middle school pupils learned statistics, using multilevel analysis. The results show 
importance of the classroom/teacher and the school on the learning process.  
 
INTRODUCTION 
 Evaluation is a problem which those involved in the field of didactics constantly face. 
Indeed, an analysis of the results is the only way to evaluate whether or not a particular 
teaching/learning process has been effective and, consequently, where to intervene. Various 
statistical approaches can be used in an evaluation and it is often quite useful to analyse the same 
data using different methodologies.  

During the 2001 school year, a performance test was administered to 1,545 middle school 
pupils in four Italian cities. They were part of a project concerning the experimentation of new 
didactic strategies for statistical learning. The students were divided into two groups, each with 
different didactic conditions Data Oriented Approach, or DOA, and DOA with Cooperative 
Learning Method or CL. The performance test was made up of 37 sub-items regarding the 
statistical notions introduced in the classroom. Various analyses were carried out on these data 
using descriptive statistical methodology (Milito-Marsala, 2002). 

The aim of this study is to analyse the results of the performance test by using a 
multilevel analysis, a methodology which quickly illustrates the relationship between variables 
while taking into account the hierarchical structure of the data. 

 
THE MULTILEVEL MODEL 

As already mentioned, among the various statistical approaches available, a multilevel 
model was chosen as it lends itself to hierarchical data and finds its natural application in the field 
of didactics. The early work on a multilevel approach (Aitkin et al. 1981) was precisely about 
educational data. [Two expository volumes appeared in the early 1990’s. The one by Bryk and 
Raudenbush (1992) discusses 2- and 3-level linear multilevel models with applications, especially 
for educational data and repeated measure designs.] Now this method and its extensions are 
beginning to be widely applied, not only in education, but also in epidemiology, geography, child 
growth, to mention a few 

The aim of a multilevel analysis is modelling links among the explicative and response 
variables, taking into account the hierarchical structure of the data, not randomly considered but 
naturally or suitably identified. The model also estimates the effects of the different levels of 
clustering on the response-variable vector. In a multilevel approach we refer to a hierarchy as 
consisting of units grouped at different levels (students may be the level-1 units, clustered within 
classrooms and schools, which in turn may be the second and third levels). The existence of such 
data hierarchies is neither accidental nor ignorable.  

Multilevel models may be used, above all, with i) sample survey data (the population 
structure is viewed as being of potential interest in itself while the survey design can be used to 
collect and analyze data about the higher level units in the population); ii) repeated measure data 
(the same individuals or units are measured on more than one occasion); iii) event history models 
(considering “time to failure” as a variable); iv) discrete response data (proportion or percentage). 
Another application which is particularly important is where measurements are missing by design 
rather than at random.  

The multilevel models can be classified, according to the included parameter typology, in 
fixed effects models (ANOVA type), variance component models and random slope models.  

For the 2-level random slope model (Goldstein, 2003): 
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where: j0β  e j1β  are random variables: jjjj vv 111000     , +=+= ββββ  

where jj vv 10  ,  are random variables with parameters:  
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We have expressed the response variable yij  as the sum of a fixed part and a random part 
within the brackets. The random variables are referred to as ‘residuals’ and in the case of a single 
level model the level-1 residual e ij0  becomes the usual linear model residual term. To make the 
model symmetrical so that each coefficient has an associated explanatory variable, we can define 
a further explanatory variable for the intercept ju00  residual, associated its and β , namely x ij0 , 
which takes the value 1.0. For simplicity this variable may often be omitted. 

The difference between a multilevel model and a standard linear model of regression or 
analysis of variance type is the presence of more than one residual term, and this implies that 
special procedures are required to obtain satisfactory parameter estimates.  

The interpretation of results is quite similar to that of a regression model. 
 
RESULTS 

The fitting of a statistical model starts from building a theoretical one and selecting 
variables to explain the variation measured on students with respect to the administered 
performance test. 

The hierarchical nature of collected data is quite clear: we dealt with 1,541 students 
(level-1 units) clustered within 75 classrooms (or teachers, level-2 units) clustered within 49 
schools (level 3), finally clustered within 4 towns (level 4). The fourth level, composed of very 
few units, was excluded from the final model. 

Different teaching strategies (variable label: experimentation, categories: DOA = 0, CL = 
1) and sex (categories: male = 0 and female = 1), measured at the students’ level, were considered 
as predictors of results on the overall performance test (variable label: ztest). Although we 
assumed there was an effect caused by the explanatory variables, we had no pre-existing idea on 
the direction of such a relationship (better marks associated with DOA or CL? Better marks for 
boys or girls?). Different effects on results were hypothesized, also depending on classrooms and 
schools. Since different teaching strategies were in fact chosen by teachers, differences among 
classrooms and schools were to be expected. 

A preliminary analysis addressed the hypothesis of no effect of sex and experimentation 
on the results of the performance test. The sample was reduced to 1,541 units depending on 
listwise deletion. The difference between the means were significant only for sex (Z = 2.21, p-
value = 0.03), not for experimentation (Z = 1.56, p-value = 0.12). Besides this, the interaction 
between the two variables was studied but provided no significant results (experimentation within 
sex 0: Z = 1.796, p-value = 0.07, experimentation within sex 1: Z = 0.4, p-value = 0.69). 

The variable classrooms had an influence on the response. The ANOVA test provided a 
significant F statistic (F74;1466 = 7.86, p-value = 0.00). 25.3% of the overall response variance 
was attributed to differences among classrooms. 

The same results held true for the variable school (F48;1492 = 9.56, p-value = 0.00). Such 
results seemed to fit multilevel model incorporating parameters for (and the over-dispersion 
caused by) level-2- and level-3 units. Such a model can be expressed in the following terms 
(Model 1): 
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the i index (i=1,2, ...,1541) indicating students, j=1,2, ...,75 indicating classrooms and 
k=1,2,.....49, schools. 

Model 1 provided the following estimates (produced by means of the Iterative 
Generalized Least Squares procedure: Goldstein, 2003) for the overall mean of the variable ztest, 
the variance accounted for respectively by schools, classrooms and students (within brackets the 
standard errors): 

0β = -0.017(0.073), 2
0vσ = 0.145(0.059), 2

0uσ = 0.113(0.041), 2
eσ = 0.752(0.028)  

The -2*loglikelihood statistic was 4079.626. 
The introduction of the explanatory variables sex and experimentation (Model 2) 

improved the fitting of the model, the regression equation of which is reported below: 
 

 
 
The likelihood ratio test (LRT) = 4079.626 – 4072.649 = 6.977. As we know, the statistic follows 
a χ2 distribution, with ν = 2 degrees of freedom, and was not significant (p-value = 0.06). 

The regression coefficient β1 was not significant (z=0.01, p-value=0.5 for one-sided test). 
So it was possible to exclude the variable experimentation and to fit a simpler model (Model 3).  
Such a model, synthesized below in usual equation terms, provided the following estimates:  
 

 
 

0β = -0.077(0.076),           2β =0.119(0.045),           2
0vσ =0.147(0.059),         2

0uσ =0.112(0.040),  
2
eσ = 0.748(0.028). 

The -2*loglikelihood statistic was the same as Model 2: 4072.649. Now the LRT was compared 
to a χ2

ν = 2 and was finally significant (p-value = 0.008). 
Up to this point we assumed variations among groups depending only on the intercepts. 

What if we admitted that the regression lines also had different slopes? The question was whether 
to fit a random slope model (Model 4) or not.  

The fitting of Model 4, expressed as follows, 
 

 

(1) 

(2) 

(3) 

(4) 
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provided a LRT = 15.364, that was compared to a χ2

ν = 5 and was significant (p-value = 0.009).  
Yet Model 4 proved to be less parsimonious than Model 3: LRT = 4072.649 - 4064.262 = 8.387, 
ν = 4 (p-value = 0.08). There was enough evidence to consider Model 3 as the best fitting one. 
 
CONCLUSION 

By using a multilevel model we were able to examine the relationship between the results 
obtained by the students on the performance test and some explanatory variables, including the 
estimate of the variance components attributed to various hierarchical levels (classrooms and 
schools). The results of those analyses, influenced by the absence of specific information 
regarding level-2 and level-3 variables, did not demonstrate relevant differences between didactic 
conditions, while the variable sex seemed to assume a certain relevance, showing better 
performance on average for girls. Moreover, although the model explains only 25% of the overall 
variance, it did demonstrate a significant effect according to classroom (level 2) and to school 
(level 3). 

We can, therefore, hypothesize that it is the teacher (i.e. the classroom) that influence the 
learning of statistics, together with the schools which participated in the project. That may be due 
to the fact that the experimentation design allowed the teachers using DOA to assign group work, 
making the two didactic conditions quite similar, at least in this respect 

The results of our analysis confirm what other studies (Milito-Marsala, 2002) have 
already found regarding the minor differences between the two didactic conditions and the 
relevance of the variable teacher (Giambalvo, 2001).  
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