Conflictos Semióticos de Estudiantes CON el
Concepto de Mediana
students’ semiotic conflicts in the concept of median
Silvia Mayén
Instituto Politécnico Nacional, México
smayen@correo.ugr.es
Carmen Díaz
Universidad de Huelva, España
carmen.diaz@dpsi.uhu.es
Carmen batanero
Universidad de Granada, España
batanero@ugr.es
resumen
El foco de este trabajo es el concepto de mediana,
sobre el que la investigación previa es escasa. Analizamos las respuestas
abiertas de 518 estudiantes mexicanos de Educación Secundaria y Bachillerato a
un problema abierto de cálculo de la mediana. Utilizando las ideas del enfoque
onto-semiótico, clasificamos las respuestas según la medida de tendencia
central utilizada y describimos los conflictos semióticos detectados. Mediante el test chi-cuadrado estudiamos la relación entre el tipo
de respuesta y el grupo de estudiantes. Observamos mejores resultados entre los alumnos de Secundaria en el cálculo
y mayor capacidad para elegir la medida de tendencia central más representativa
en los alumnos de Bachillerato.
Palabras clave:
Investigación
en estadística educativa, Comprensión, Enfoque onto-semiótico,
Medidas de
tendencia central, Educación Secundaria.
ABSTRACT
The focus of this research is the concept of
median, which has received scarce interest in previous research. We analyse the
open responses given by 518 Mexican students from Educación Secundaria (Junior)
and Bachillerato (Senior) Secondary Education to a problem involving the
computation of median. Using some ideas from the onto-semiotic approach, we
classify the responses, taking into account the central tendency measure used,
and describe the students’ semiotic conflicts. We use the chi-square test to
study possible dependence between responses and students’ group. We observe
better results in computation in Educación Secundaria students but better
competence to select the best representative value in Bachillerato students.
Keywords:
Statistics
education research, Understanding, Onto-semiotic approach, Measures of center,
Secondary education.
__________________________
Statistics Education Research
Journal, 8(2), 5-32, http://www.stat.auckland.ac.nz/serj
Ó International Association for Statistical Education (IASE/ISI),
November, 2009
REFERENCiaS
Barr, G. V. (1980). Some students’ ideas on the median and the mode. Teaching Statistics, 2, 38-41.
Batanero, C., Estepa, A., & Godino, J. D.
(1997). Evolution of students’ understanding of statistical association
in a computer-based teaching environment. En J. B. Garfield & G. Burrill
(Eds.), Research on the role of technology in teaching and learning
statistics. Proceedings of the 1996 IASE Round Table Conference (pp.
183-198). Voorburg, Netherlands: International Statistical Institute.
Batanero, C., Godino, J. D., & Navas, F.
(1997). Concepciones de maestros de primaria en formación sobre los promedios
[Pre-service primary school teachers’ conceptions of averages]. En H. Salmerón
(Ed.), VII Jornadas LOGSE: Evaluación educativa (pp. 310-304). Granada, Spain: University of
Granada.
Cai, J. (1995). Beyond the
computational algorithm. Students’ understanding of the arithmetic average
concept. En L. Meira (Ed.), Proceedings of the 19th Conference of the
International Group for Psychology of Mathematics Education (Vol. 3, pp.
144-151). Universitye Federal de
Pernambuco, Recife, Brazil.
Carvalho, C. (1998). Tarefas estadísticas e
estratégias de resposta [Statistics tasks and response strategies]. Trabajo
presentado en el VI Encuentro en Educación Matemática de la Sociedad
Portuguesa de Ciencias de la Educación. Castelo de Vide, Portugal.
Carvalho, C. (2001). Interaçao entre pares.
Contributos para a promoçao do desenvolvimiento lógico e do desempenho
estatístico no 7º ano de escolaridade [Peer Interaction. Contributions to
promoting logic and statistical development in the 7th year of school].
Tesis Doctoral, Universidad de Lisboa.
Cobo, B. (2003). Significado de las medidas de
posición central para los estudiantes de secundaria [Meanings of central
tendency measures for secondary school students]. Tesis Doctoral, Universidad
de Granada.
Cobo, B., & Batanero, C. (2000). La mediana en
la educación secundaria obligatoria: ¿Un concepto sencillo? [The median
in compulsory education: An easy concept?]. UNO 23, 85-96.
Eco, U. (1995). Tratado de semiótica general
[General semiotics]. Barcelona: Lumen. (Trabajo original publicado en 1976)
Gattuso, L., & Mary, C. (1996). Development
of concepts of the arithmetic average from high school to University. Proceedings
of the 20th Conference of the International Group for the Psychology of
Mathematics Education (Vol. I, pp. 401-408). Universidad de Valencia.
Godino, J. D., & Batanero, C. (1997). Clarifying
the meaning of mathematical objects as a priority area of research in
mathematics education. En J. Kilpatrick & A. Sierpinska (Eds.), Mathematics education as a research
domain: A search for identity (pp. 177-196). Dordrecht: Kluwer.
Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135.
Godino, J. D., Batanero, C., & Roa, R.
(2005). An onto-semiotic
analysis of combinatorial problems and the solving processes by university
students. Educational Studies in Mathematics, 60(1), 3-36.
Groth, R. E., & Bergner, J. A. (2006). Preservice elementary teachers’ conceptual and procedural knowledge of mean, median, and mode. Mathematical Thinking and Learning, 8, 37-63.
Jacobbe, T. (2008).
Elementary school teachers’ understanding of the mean and median. En C. Batanero, G. Burrill, C.
Reading, & A. Rossman (eds.),
Joint ICMI/IASE study: Statistics in
school mathematics. Challenges for teaching and teacher education. Proceedings
of the ICMI Study 18 Conference and IASE 2008 Round Table Conference. Monterrey, Mexico: International
Commission on Mathematical Instruction and International Association for
Statistical Education.
[Online: www.stat.auckland.ac.nz/~iase/publications.]
Mayén, S., Batanero, C., & Díaz, C. (2009).
Conflictos semióticos de estudiantes mexicanos en un problema de comparación de
datos ordinales [Semiotic conflicts of Mexican students in comparing ordinal
data]. Revista Latino Americana de Investigación en Matemática Educativa, 12(2),
151-178.
McGatha, M., Cobb, P., & McClain, K. (1998, April). An analysis of students’ statistical understandings. Trabajo presentado en el Annual Meeting of the American Educational Research Association, San Diego, CA.
Pollatsek, A., Lima, S., & Well, A. D. (1981). Concept or computation: Students’ understanding of the mean. Educational Studies in Mathematics, 12, 191-204.
Ruiz, B. (2006). Un acercamiento
cognitivo y epistemológico a la didáctica del concepto de variable aleatoria. [A cognitive and epistemological
approach to the teaching of the concept
of random variable] Tesis de Master, CICATA, México.
Schuyten, G. (1991). Statistical thinking in Psychology and Education. En D. Vere-Jones (Ed.), Proceedings of the Third International Conference on Teaching Statistics (ICOTS-3), Dunnedin, (Vol. 1, pp. 486-490). Voorburg, Netherlands: International Statistical Institute.
Watson, J. M., & Moritz, J. B. (1999). The developments of concepts of average. Focus on Learning Problems in Mathematics, 21(4), 15-39.
Watson, J. M., & Moritz, J. B. (2000). The longitudinal development of understanding of average. Mathematical Thinking and Learning, 2(1 and 2), 11-50.
Zawojewski, J. S., & Heckman, D. J. (1997). What do students know about data analysis, statistics, and probability? En P. A. Kenney & E. A. Silver (Eds.), Results from the sixth mathematics assessment of the National Assessment of Educational Progress (pp. 195-223). Reston, VA: National Council of Teachers of Mathematics.
SILVIA MAYÉN
CECYT 6 Miguel Othón de
Mendizábal
Instituto Politécnico Nacional
Av. Jardín, calle 4, Colonia
del Gas
02950, México, D.F, México.