Conflictos Semióticos de Estudiantes CON el Concepto de Mediana

 

students’ semiotic conflicts in the concept of median

Silvia Mayén

Instituto Politécnico Nacional, México

smayen@correo.ugr.es

 

Carmen Díaz

Universidad de Huelva, España

carmen.diaz@dpsi.uhu.es

 

Carmen batanero

Universidad de Granada, España

batanero@ugr.es

 

resumen

 

El foco de este trabajo es el concepto de mediana, sobre el que la investigación previa es escasa. Analizamos las respuestas abiertas de 518 estudiantes mexicanos de Educación Secundaria y Bachillerato a un problema abierto de cálculo de la mediana. Utilizando las ideas del enfoque onto-semiótico, clasificamos las respuestas según la medida de tendencia central utilizada y describimos los conflictos semióticos detectados. Mediante el test chi-cuadrado estudiamos la relación entre el tipo de respuesta y el grupo de estudiantes. Observamos mejores resultados entre los alumnos de Secundaria en el cálculo y mayor capacidad para elegir la medida de tendencia central más representativa en los alumnos de Bachillerato.

 

Palabras clave: Investigación en estadística educativa, Comprensión, Enfoque onto-semiótico, Medidas de tendencia central, Educación Secundaria.

 

ABSTRACT

 

The focus of this research is the concept of median, which has received scarce interest in previous research. We analyse the open responses given by 518 Mexican students from Educación Secundaria (Junior) and Bachillerato (Senior) Secondary Education to a problem involving the computation of median. Using some ideas from the onto-semiotic approach, we classify the responses, taking into account the central tendency measure used, and describe the students’ semiotic conflicts. We use the chi-square test to study possible dependence between responses and students’ group. We observe better results in computation in Educación Secundaria students but better competence to select the best representative value in Bachillerato students.

 

Keywords: Statistics education research, Understanding, Onto-semiotic approach, Measures of center, Secondary education.

 

 

__________________________

Statistics Education Research Journal, 8(2), 5-32, http://www.stat.auckland.ac.nz/serj

Ó International Association for Statistical Education (IASE/ISI), November, 2009

 

REFERENCiaS

 

Barr, G. V. (1980). Some students’ ideas on the median and the mode. Teaching Statistics, 2, 38-41.

Batanero, C., Estepa, A., & Godino, J. D. (1997). Evolution of students’ understanding of statistical association in a computer-based teaching environment. En J. B. Garfield & G. Burrill (Eds.), Research on the role of technology in teaching and learning statistics. Proceedings of the 1996 IASE Round Table Conference (pp. 183-198). Voorburg, Netherlands: International Statistical Institute.

Batanero, C., Godino, J. D., & Navas, F. (1997). Concepciones de maestros de primaria en formación sobre los promedios [Pre-service primary school teachers’ conceptions of averages]. En H. Salmerón (Ed.), VII Jornadas LOGSE: Evaluación educativa (pp. 310-304). Granada, Spain: University of Granada.

Cai, J. (1995). Beyond the computational algorithm. Students’ understanding of the arithmetic average concept. En L. Meira (Ed.), Proceedings of the 19th Conference of the International Group for Psychology of Mathematics Education (Vol. 3, pp. 144-151). Universitye Federal de Pernambuco, Recife, Brazil.

Carvalho, C. (1998). Tarefas estadísticas e estratégias de resposta [Statistics tasks and response strategies]. Trabajo presentado en el VI Encuentro en Educación Matemática de la Sociedad Portuguesa de Ciencias de la Educación. Castelo de Vide, Portugal.

Carvalho, C. (2001). Interaçao entre pares. Contributos para a promoçao do desenvolvimiento lógico e do desempenho estatístico no 7º ano de escolaridade [Peer Interaction. Contributions to promoting logic and statistical development in the 7th year of school]. Tesis Doctoral, Universidad de Lisboa.

Cobo, B. (2003). Significado de las medidas de posición central para los estudiantes de secundaria [Meanings of central tendency measures for secondary school students]. Tesis Doctoral, Universidad de Granada.

Cobo, B., & Batanero, C. (2000). La mediana en la educación secundaria obligatoria: ¿Un concepto sencillo? [The median in compulsory education: An easy concept?]. UNO 23, 85-96.

Eco, U. (1995). Tratado de semiótica general [General semiotics]. Barcelona: Lumen. (Trabajo original publicado en 1976)

Gattuso, L., & Mary, C. (1996). Development of concepts of the arithmetic average from high school to University. Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 401-408). Universidad de Valencia.

Godino, J. D., & Batanero, C. (1997). Clarifying the meaning of mathematical objects as a priority area of research in mathematics education. En J. Kilpatrick & A. Sierpinska (Eds.), Mathematics education as a research domain: A search for identity (pp. 177-196). Dordrecht: Kluwer.

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135.

Godino, J. D., Batanero, C., & Roa, R. (2005). An onto-semiotic analysis of combinatorial problems and the solving processes by university students. Educational Studies in Mathematics, 60(1), 3-36.

Groth, R. E., & Bergner, J. A. (2006). Preservice elementary teachers’ conceptual and procedural knowledge of mean, median, and mode. Mathematical Thinking and Learning, 8, 37-63.

Jacobbe, T. (2008). Elementary school teachers’ understanding of the mean and median. En C. Batanero, G. Burrill, C. Reading, & A. Rossman (eds.), Joint ICMI/IASE study: Statistics in school mathematics. Challenges for teaching and teacher education. Proceedings of the ICMI Study 18 Conference and IASE 2008 Round Table Conference. Monterrey, Mexico: International Commission on Mathematical Instruction and International Association for Statistical Education.

[Online: www.stat.auckland.ac.nz/~iase/publications.]

Mayén, S., Batanero, C., & Díaz, C. (2009). Conflictos semióticos de estudiantes mexicanos en un problema de comparación de datos ordinales [Semiotic conflicts of Mexican students in comparing ordinal data]. Revista Latino Americana de Investigación en Matemática Educativa, 12(2), 151-178.

McGatha, M., Cobb, P., & McClain, K. (1998, April). An analysis of students’ statistical understandings. Trabajo presentado en el Annual Meeting of the American Educational Research Association, San Diego, CA.

Pollatsek, A., Lima, S., & Well, A. D. (1981). Concept or computation: Students’ understanding of the mean. Educational Studies in Mathematics, 12, 191-204.

Ruiz, B. (2006). Un acercamiento cognitivo y epistemológico a la didáctica del concepto de variable aleatoria. [A cognitive and epistemological approach to the teaching of the concept of random variable] Tesis de Master, CICATA, México.

Schuyten, G. (1991). Statistical thinking in Psychology and Education. En D. Vere-Jones (Ed.), Proceedings of the Third International Conference on Teaching Statistics (ICOTS-3), Dunnedin, (Vol. 1, pp. 486-490). Voorburg, Netherlands: International Statistical Institute.

Watson, J. M., & Moritz, J. B. (1999). The developments of concepts of average. Focus on Learning Problems in Mathematics, 21(4), 15-39.

Watson, J. M., & Moritz, J. B. (2000). The longitudinal development of understanding of average. Mathematical Thinking and Learning, 2(1 and 2), 11-50.

Zawojewski, J. S., & Heckman, D. J. (1997). What do students know about data analysis, statistics, and probability? En P. A. Kenney & E. A. Silver (Eds.), Results from the sixth mathematics assessment of the National Assessment of Educational Progress (pp. 195-223). Reston, VA: National Council of Teachers of Mathematics.

 

 

SILVIA MAYÉN

CECYT 6 Miguel Othón de Mendizábal

Instituto Politécnico Nacional

Av. Jardín, calle 4, Colonia del Gas

02950, México, D.F, México.

mayazuc@gmail.com