Lexical Scope and Statistical Computing

Robert GENTLEMAN and Ross IHAKA*

Abstract

The nature of statistical computing has changed a great deal in the
past 15 years mainly due to the influence of programming environments
such as S (Becker, Chambers, and Wilks, 1988) and Lisp-Stat (Tierney,
1990). Both these programming environments have languages for per-
forming computations, data storage mechanisms and a graphical interface.
Their usefulness in providing an interactive interface to data analysis is
invaluable. In order to take full advantage of these programming environ-
ments statisticians must understand the differences between them. Thaka
and Gentleman (1996) introduced R, a version of S which uses a different
scoping regimen. In some ways this makes R behave more like Lisp-Stat.
In this paper we discuss the concept of scoping rules and show how lexical
scope can enhance the functionality of a language.

Key Words: Statistical Computing; Function Closure; Lexical Scope;
Random Number Generators.

1 Introduction

The nature of statistical computing has changed a great deal in the past 15 years
mostly because of the influence of programming environments such as S (Becker,
Chambers, and Wilks, 1988) and Lisp-Stat (Tierney, 1990). These environments
have encouraged statisticians to become programmers so that they can have
more effective control over the data analytic process. Statisticians can, therefore,
benefit from considering programming paradigms and their implications. In this
paper we will discuss scoping rules. These are the rules by which variables, ie.
symbols, and values are associated. We will show some of the effect scoping has
on evaluation in computer languages and demonstrate how some scoping rules
may be beneficial to statisticians.

In every computer language there is a process for obtaining the value of a
symbol when a computation is being carried out. If we ask the computer to
evaluate x+5 then there must be a mechanism or algorithm for determining the
value represented by x. The set of rules used to obtain a value for x are called
the scoping rules of the language. It is rather surprising how many different

*Senior lecturers in the Department of Statistics, University of Auckland, Private Bag
92019, Auckland, New Zealand.

ways this can be done and how large an effect the method used has on the
behavior of the language.

We will call a collection of symbols and associated values an environment.
Under certain scoping rules it is possible to create function closures. A function
closure is a function together with an environment. In many programming
languages, particularly functional languages, closures are the basic programming
construct. By associating different environments with a function or by changing
the values of some of the variables in an environment we alter the way the
function evaluates. This mechanism is a useful abstraction for many of the
programming tasks faced by statisticians.

By way of illustration we use code written in two languages with different
scoping rules and compare the results. To this end our examples are coded in
both R and S. The syntax and semantics of the two languages are very similar
and the reader can easily compare the results. S and R are languages where
functions are first class objects. That means that functions can be passed as
arguments to functions and returned as values from functions. This ability is
rarely used even though it is potentially very powerful.

Our examples include likelihood functions, probability functions, Bayes es-
timates and random number generators. We show how the scoping rules used
affect these. We have chosen to use simple examples and simple data sets to
make it easy for the reader to check on the details.

The remainder of the paper is organized as follows. In section 2 we extend
our discussion of the scoping rules and discuss several general concepts needed
to show how the scoping rules affect evaluation. In section 3 we provide exam-
ples of the advantages of function closures. Then in section 4 we comment on
assignment and how being able to change the state of a closure can be useful.
Finally in section 5 we summarize our findings.

2 Evaluation and Scoping Rules

Most computer languages have values, symbols (or variables), and functions.
Often the same symbol appears in several different contexts within a computer
program. For example, the symbol x can be a global variable, a local variable
in a function, and a formal parameter to another function simultaneously. An
important part of the computational process is associating symbols with values.
The rules that are used to do this are called scoping rules.

The symbols which occur in the body of a function can be divided into two
groups; bound variables and free variables. The formal parameters of a function
are those occurring in the argument list of the function. Any variable in the
body of the function that matches one of the formal parameters is bound to that
formal parameter. Local variables, those whose values are determined by the
evaluation of expressions in the body of the functions, are bound to the values
of the expressions. All other variables are called free variables. At the time that
the function is evaluated a binding must be obtained for all variables. It is an
error to access an unbound variable in every computer language.

The process of function evaluation is similar across programming languages.
The body of a function is the set of statements that will be executed (sequen-
tially) when the function is invoked. At this time a new environment, the
evaluation environment, is created and in this environment the function’s for-
mal arguments (symbols) are bound to the actual arguments (values). Bindings
for free variables are resolved in the environments specified by the scoping rules.
Users familiar with the inner workings of S will realize that S’s frames are an
implementation of environments.

Both R and S are interactive languages. The user invokes the language in
some fashion and is then presented with a prompt. Usually at this point assign-
ments and evaluation are with respect to an environment which we shall call the
top—level environment. Behavior of the language in this top-level environment is
generally slightly different from its overall behavior. For example, while purely
functional languages do not allow assignment they do allow it at top—level; oth-
erwise the user could not define new functions. In R the behavior of functions
defined at top—level is different from the behavior of functions defined inside of
other functions. In S the behavior of functions is essentially the same no matter
where they were defined.

Consider the following function definition.

f <-
function(x) {
y <- 2 % x
print(x)
print (y)
print(z)
}

In this function x is a formal parameter, y is a local variable and z is a free
variable.
Now consider the functions defined below.

funl <-
function(x) x + y

fun2 <-
function() {
y <- 20
function(x) x + y

}

Let’s first consider funl. It was created at top-level and will behave the
same way in both R and S. If y has not been defined when fun1 is invoked an
error will be signaled. The value returned by funl will depend on the current
value of y in the top-level environment.

> fun1(3)
Error: y not found

>y <- 12
> fun1(3)
[1] 15
>y <- 13
> fun1(3)
[1] 16

We now turn to the somewhat more interesting case of fun2. Notice that it
returns a function which is essentially the same as funl. When fun?2 is invoked
it returns a function. The behavior of this returned function is different in R
and S because of the different scoping rules. In R the scoping rules state that
the free variables in a function are resolved in the environment that was active
at the time the function was created. In S the scoping rules state that the free
variables are resolved at top-level. Let’s make the assignment

R> fun3 <- fun2()
and then examine the values in funi and fun3.

R> funil
function (x)
X +y

R> fun3

function (x)

x+ty

<environment: 0x14b488>

R>y <-2
R> funi(5)
[11 7
R> fun3(5)
[1]1 25

In R, when fun? is invoked, a new environment is created. Within this environ-
ment, y is assigned the value 20. Since the function which is ultimately assigned
to fun?2 is also defined within this environment, it has access to the variables
in the environment. In particular, the value for y is found in this environment.
In S, fun3 finds its variable bindings in the top-level environment and so it will
evaluate in the same way that funl does.

Notice that R functions that have environments other than the top-level
environment associated with them have that environment explicitly printed.
This is a visual aid to remind the user that the behavior of such a function
may be different from a function with the same body but a different associated
environment.

2.1 Scoping Rules

We now discuss scoping rules more generally. For the purposes of the present
discussion we identify four types of scoping rules: trivial scope, dynamic scope,
static scope and lexical scope. Under trivial scope free variables are not allowed.
Under dynamic scope the value associated with a free variable is determined by
searching back up the sequence of calling functions and using the most recently
defined value associated with that symbol. Under static scope the values of the
free variables are determined by a set of global variables. This is the kind of
scoping used in C and S. When the values of the free variables are defined by
the bindings that were in effect at the time the function was created then the
language is lexically scoped. This is the kind of scoping used in R and Scheme.

While the usual definition of static or lexical scope in computer science is
that the variable bindings can be determined from a printed copy of the code this
definition is not specific enough. Computer scientists tend not to differentiate
as finely because their concerns are different. However, if we consider some
commonly used computer languages that satisfy this definition of lexical scope
we see that there can be large differences between them. For example, in C
you are not allowed to nest function definitions so only global variables can be
bound to free variables. In S nested function definitions are permitted but S
does not resolve the free variable bindings within the calling function instead
it resolves them globally. In both R and Scheme the free variable bindings are
resolved by first looking in the environment in which the function was created.
Since we want to contrast R and S with respect to this difference we have refined
the scoping definitions to our purpose.

The following code exemplifies the difference between static scope and lexical
scope, as we have defined them.

boot <-
function(x, statistic, bootreps) {
n <- length(x)
sapply(1:bootreps,
function(dummy)
statistic(sample(x, n, replace = TRUE)))
}

This is a very succinct function that will bootstrap any univariate function.
It, however, relies on lexical scope and hence will evaluate properly in R but not
in S. In the call to sapply there is an anonymous function; that is, a function
with no name. When sapply is invoked it will evaluate its arguments in the
environment of the calling function. The semantics of both R and S are that
the anonymous function is defined in the evaluation environment of boot. Now,
when the anonymous function is evaluated we encounter the symbols statistic,
x, and n which are free variables.

Thus in R, because it is lexically scoped, the local and appropriate values
will be used. In S the top-level environment will be searched for these symbols
and it is likely, but not certain, that an error will be signaled. It is relatively

easy to construct a version that will work correctly in S.

boot2 <-
function(x, statistic, bootreps) {
n <- length(x)
sapply(1:bootreps,
function(dummy, data, stat, num)
stat(sample(data, num, replace = T)),
x, statistic, n)

¥

In boot2 there are five arguments passed to sapply. The last three arguments;
X, statistic, and n, are passed to sapply explicitly and the semantics of
sapply ensure that they are then passed on to the anonymous function. The
names of the formal parameters in the anonymous function must match those
used in the body of the anonymous function so that there are no free variables
in the anonymous function.

2.2 Programming Styles

Looking at languages that have lexical scope one finds that a number of them are
functional languages, eg. ML, Miranda and Haskell. Both Lisp and Scheme have
lexical scope but are not generally considered to be truly functional languages.

Functional programming is a style of programming where function calls are
the primary programming construct. Functional languages tend not to allow
assignment, (except at top-level). Languages that use assignment, such as C
and FORTRAN are called imperative languages.

It should be noted, however, that most functional languages that have come
into popular use added some mechanism for assignment, eg Lisp and ML. It is
quite difficult to write efficient programs without side—effects. However, good
programmers still rely mainly on function closures.

There are stylistic differences between functional languages and imperative
languages both in terms of the programs that are written and in terms of the
data structures used. In imperative languages arrays are a common and useful
data type; this is less true in functional languages. The problem being that
it is difficult to directly access arbitrary array elements without some form
of assignment. Functional languages tend to rely more on list structures and
explicit data types.

Functional languages have gained popularity through their close relation
to the theory of computing and to the underlying mathematics that is being
implemented. They have also been closely involved in the study of artificial
intelligence. Further, in a purely functional language the order in which state-
ments are executed does not affect the final result. This feature has engendered
some interest in highly parallel computing.

Consider the two functions below that implement the simple process of sum-
ming up the elements of a vector.

suml <-
function(x) {
sum <- 0
for (i in 1:length(x))
sum <- sum + x[i]
sum

sum?2 <-
function(x) {
if (length(x) == 1)
X
else
x[1] + sum2(x[-11)
}

Both functions will work in either S or R and provide the same results.
However, because neither R nor S are properly tail recursive sum2 can only be
used on small examples. The first is an imperative version of sum while the
second is a functional version and in sum2 no assignments are made. Many
procedures can be written in either form.

Functional programming provides a different paradigm and a different ab-
straction. In some cases this abstraction is very useful and in others it is less
so. Very little S code has been programmed in a functional style. In part this
is due to the fact that it can be done easily in an imperative fashion. In part it
is due to the fact that many programmers simply use S to prototype algorithms
that they intend to implement in C which is imperative. And, in part, we argue
that it is due to the lack of language support in the form of lexical scope.

2.3 Problems

There are other implications of lexical scope and environments. The environ-
ments for function evaluation must be maintained, that is, they must be per-
sistent objects. When a function is returned as a value, it must have access to
the environment in which it was created. Having persistent environments raises
many issues some of which are addressed in Thaka and Gentleman (1996).

Under static scope environments can be transient, that is they can disappear
once the function has returned a value. We can be sure that this environment
will never be needed again.

If the language allows the programmer to change the values associated with
the variables in the environment of a lexical closure then further difficulties arise.
In particular it becomes very difficult to store the functions as files and thus
the program, when active, must have all objects reside in memory. The prob-
lem arises because several functions may share a single environment. Changes
made by one of the functions should be reflected in the behavior of the others.
However, in most implementations (and in that of R) environments do not keep

track of the functions associated with them, rather, the functions keep track of
their environment.

3 Examples

In this section we will give some examples which indicate the usefulness of
function closures. Function closures are function bodies bound together with
values for the free variables. In most lexically scoped languages this binding is
achieved through the associated environment but the binding can be achieved
in many different ways. An example of how to achieve this in S is given in an
Appendix.

Function closures allow you to encapsulate the data. When considering
likelihoods and Bayes estimates we will see how this allows us to ensure that the
correct data and probability models are always being used. There is a strong
relationship between function closures and object—oriented programming. In
some sense you can argue that a function closure is an instance of an object.
While one can use lexical scope to build an object system that is probably not
the best way to do it.

A second reason to use function closures is that they allow you to keep the
code closer to the underlying mathematics. This should make it easier to write
and understand the code. We demonstrate this feature in both the Bayesian
estimation and numerical integration sections below.

3.1 Likelihoods

Suppose we observe a sample of size n which we believed to be from the Ex-
ponential density, f(x) = pexp(—zu) where both p and z must be positive.
In order to estimate p one can use the likelihood principle. The log likeli-
hood function for a sample, (z1,...,%,), from an Exponential(u) distribution
is I(u) = nlog(u) — 1> (;). The maximum likelihood estimate is the value of
4 which maximizes this function.

Likelihood functions are commonly used in both research and teaching. It
would be convenient to have some means of creating a likelihood function. This
means that we want to have some function, which we will call a creator, that we
pass data to and get back a likelihood function. We will call this function the
returned function. This likelihood function would then take as arguments values
of the parameter (u in the case above) and return the likelihood at that point
for the data that was supplied to the creator. To do so the returned function
needs to have access to the values of the data that were passed to the creator.

If the programming language has lexical scope there is no problem because
the returned function is created inside the creator and hence has access to all
variable definitions that were in effect at the time that it was created.

In the following example Rm1fun is a creator. It sets up several local variables
which will be needed by the likelihood function and whose values depend on
the data supplied. Then the likelihood function is created and returned. The

environment associated with the returned function is the environment that was
created by the invocation of Rm1fun which means that the variables n and sumx
will have bindings in that environment.

Rmlfun <-
function(x) {
sumx <- sum(x)
n <- length(x)
function(mu)
n * log(mu) - mu * sumx

¥

Subsequent evaluation of Rm1fun causes the creation of a new environment
with bindings to n and sumx which depend on the arguments supplied to Rm1fun.
This environment does not interfere in any way with any environment created
by previous invocations of Rmlfun.

R> efun <- Rmlfun(1:10) # efun is a function!
R> efun(3)

[1] -154.0139

R> efun2 <- Rmlfun(20:30)
R> efun2(3)
[1] -812.9153

R> efun(3) # nothing has changed for efun
[1] -154.0139

This example does not work in S. In S Rm1fun returns a function with the correct
body but when efun is evaluated an error occurs because the environment in
which n and sumx were bound evaporated when Rmlfun returned its value.
They are free variables in efun and unless there are global variables with the
same names an error will be signaled. However, the function MC, given in an
Appendix, can be used to provide similar functionality in S.

S> Smlfun <-
function(x) {
sumx <- sum(x)
n <- length(x)
rfun <- function(mu)
n * log(mu) - mu * sumx
MC(rfun, list(sumx = sumx, n = n))
}
S> efun <- Smlfun(1:10)
S> efun(3)
[1] -154.0139

3.2 Function Optimization

In this section we will extend the example given above slightly to indicate one of
the areas where lexical scope can provide great simplifications of the code. We
will use simple examples and naive implementations of them so that the points
regarding lexical scope are not lost amid the complexity of function optimization.
For the reader this can be paraphrased as, do not use these methods, they are
only examples and there are better ways to solve these problems. However,
even the better solutions benefit from lexical scope so we lose nothing and gain
simplicity for our purpose.

A somewhat simple method for finding the zero of an arbitrary function,
f(x), of one variable is Newton’s method. If a is an initial guess as to the value
of z such that f(x) = 0 then an improved guess is obtained via

Tnew :a_f(a)/fl(a)' (1)

This process can then be iterated until a value of Z,e, is obtained such that
S (%new) is sufficiently close to zero.

Optimization problems frequently arise in all areas of statistics and one
common problem is in finding the maximum likelihood estimate. In many cases
the likelihood is convex in the parameters and hence has a single maximum. In
that case the maximum likelihood estimate can be obtained by finding the place
where the score function (the first derivative of the likelihood) is zero.

In most of the problems that arise in statistics the objective function depends
not only on the parameter that we are optimizing over but on many other
variables (usually the data). Because of that one can never really use the simple
form of Equation 1. In most implementations there must be some means of
passing the extra information to the optimizer. This generally complicates the
code and often results in code that is not easily extensible.

However, when the language has lexical scope, the simple form can be used
for many problems. Consider the slightly extended likelihood function generator
given below.

Rmklike <-
function(data) {

n <- length(data)
sumx <- sum(data)
1fun <- function(mu) n * log(mu) - mu * sumx
score <- function(mu) n / mu - sumx
d2 <- function(mu) -n / mu"2
list(1fun = 1fun, score = score, d2 = d2)

X

In this function we return not only the likelihood function but also functions to
obtain the score and the second derivative.
The optimizer can then be written in the following way,

newton <-

10

function(lfun, est, tol = le-7, niter = 500) {
cscore <- 1lfun$score(est)
if (abs(cscore) < tol)
return(est)
for (i in 1:niter) {
new <- est - cscore / lfun$d2(est)
cscore <- 1lfun$score(new)
if (abs(cscore) < tol)
return(new)
est <- new
}
stop("exceeded allowed number of iterations")

}

The function newton can be used to find the zero of any univariate function pro-
vided that the function passed in adheres to the protocol that the zero function
is stored in the list as score and its derivative is stored in the list as d2.

This functionality can be used in S as well. One simply modifies Rmklike
to use MC to create each of the functions that are to be returned. It should
be noted that this approach works because none of the returned functions alter
the values of n or sumx. If we were working on a problem where values of some
constants change between function calls then lexical closures can be used in R
but the method described for S will not work. The difference is that in S the
returned functions will each have their own copies of the state variables while
in R they will share one set.

3.3 Probabilities and Related Concepts

Suppose we want to take a set of data and make an empirical cumulative dis-
tribution function from it. One representation of an ecdf is as Pr(X < t). A
functional version of the ecdf accepts as input a real number ¢ and returns a
value between 0 and 1.

mkecdf <-
function(x) {
n <- length(x)
function(t)
sum(x <=t) / n

3

The local variables in the returned function are bound to the values they held
at the time the returned function was created. These examples are useful in the
teaching of statistics and probability since they function in a manner consis-
tent with our perceptual model and hence allow for easy abstraction to related
problems.

In fact these functions and concepts are of more general use. Gentleman and
Crowley (1989) examine their use for smoothing data. Consider a scatter plot

11

with a response variable plotted in the y direction and a covariate plotted in the
x direction. A scatterplot smoother is a line added to the plot which represents
an estimate of the mean response conditional upon the value of the covariate.
Adding a scatterplot smoother enhances our perception of the dependence be-
tween the response and the covariate. An example of a smoother is a running

mean which is given by
. 1
Ne

where N, is the list of indices of the k£ nearest neighbors of the point z. This
scatter plot smoother shows how the mean response changes as the value of the
covariate changes.

Many smoothers may be written as functionals of the estimated conditional
distribution function. For example, the running mean can be written as

M, = /udﬁ’z(u | k)

where F,(- | k) is the empirical distribution function based on the k nearest
neighbors of z. This latter representation of the running mean can easily be
generalized to use estimates of F' other than the empirical distribution function.
It also lends itself to easily being adapted to providing estimates other than a
running mean (eg. running quantiles) by simply changing the integrand.

This formulation is also useful computationally. Take the entire data set,
break it down into neighborhoods and estimate a conditional distribution in
each. Return a vector or a list of all the conditional distributions. Now writing
a function which takes a conditional distribution function as input and returns
the desired quantity yields the appropriate smoother with little additional com-
putational effort.

3.4 Numerical Integration

To see how a functional approach puts you closer to the mathematics consider
numerical integration. To integrate a function in one dimension the midpoint
rule can be easily used. This rules states that

b b—a
[f@de 0 pa),

n

where z; = a + h/2,a+ 3h/2,...,b— h/2 and h = (b — a)/n. This translates
into the program,

midpoint <-
function(f, a, b, n = 100) {
h<-(-a)/n
(b-a) * mean(sapply(seq(a +h / 2, b -h / 2, len = n),f))
}

12

To compute a bivariate integral,

by b
/ f (@, y)dedy

mathematically we think of this as first integrating with respect to z and then
with respect to y. Programmatically we would like to duplicate this, the follow-
ing code segment does just that.

integrate <-
function(f, a, b, n = 100, rule = midpoint) {
g <- function(y) {
fx <- function(x) { f(x, y) }
rule(fx, a[2], b[2], n)
}
rule(g, al1l, b[1])
}

Note that the function integrate relies heavily on lexical scope. When fx
is evaluated in g it must find the correct value for y. In S it will not. This is a
very natural implementation of the iterated integral, we have not had to make
provision for passing extra parameters and we have suppressed arguments that
do not change.

3.5 Bayesian Estimation

These ideas can be further extended to some simple examples in Bayesian statis-
tics. In a Bayesian setting inference about the unknown parameter(s), 6, is
based on both the observed data and a prior belief about possible values of the
unknown parameter(s). This prior belief is generally expressed in terms of a
probability distribution on the possible values of the parameter(s). This distri-
bution is termed the prior distribution and we will label it 7(f). In a Bayesian
setting one uses the prior distribution, the assumed form of the distribution of
the data and Bayes Theorem to obtain a posterior distribution for the parameter
given the data. Inference about the parameter(s) is then based on this posterior
distribution.

Since the posterior, prior and conditional distribution of the data given the
parameters are all functions this is a natural candidate for functional program-
ming. From a pedagogical point of view Bayesian statistics was often given
reduced emphasis due to the computational difficulties inherent in the calcula-
tion of the posterior distribution. Recently Markov Chain Monte Carlo methods
have overcome this but simple application of functional programming methods
can also yield useful results.

Mathematically, we begin with a prior distribution on @ called #(-). The con-
ditional distribution of the data given 6 is denoted f(z|¢). Under the Bayesian
assumptions z and 6 have a joint distribution, f(z,) and the marginal distri-

13

bution of x can be computed as,
f@) = [=O)5(al0).

where § € ©. Then the posterior distribution is computed as,

f(z]6)
fl@)

To see how we can implement this in a functional way we first make the
setting more concrete. Let’s suppose that we have x successes in n Bernoulli
trials and that we wish to estimate 6 which is the probability of a success. It is
well-known that if € is assumed to have a Uniform prior distribution then the
posterior distribution is,

fOlz) ==(0)

6*(1—0)°
Bz +1,n—z+1)’

fOlz) =

where B() is the Beta function. Hence we see that the posterior distribution is
a Beta distribution. If one wants to choose a different prior the mathematics
become somewhat more difficult.

A computational solution to this problem is given by the functions below.

piunif <-
function(x)
ifelse (0 <=x & x <=1, 1, 0)

bayesunif <-
function(x, n, prior = piunif) {
cprob <- function(theta) dbinom(x, n, theta)
integrand <- function(theta) prior(theta) * cprob(theta)
px <- midpoint(integrand, 0, 1)
function(theta)
prior(theta) * cprob(theta) / px
}

The first function, piunif is simply a functional form of the Uniform density.
The second function, bayesunif, returns as a function the posterior density of
0 given the data. This can be evaluated for any value of 6. In contrast to the
theoretical approach the use of any other prior is straightforward. One simply
writes the appropriate substitute for piunif and calls bayesunif supplying it
as the prior.

Examining bayesunif we see that the functional programming style has
been used to keep us closer to the mathematics. The function cprob is the
conditional distribution of = given 6, the function integrand is the integrand
needed to evaluate the marginal distribution of , and we reuse midpoint defined
previously, to compute the constant f(z); remember that the data are fixed.
Finally, the posterior is returned.

14

This can be plotted, it can be used to find F(|z), again using midpoint.
One can generate observations from this density using rejection algorithms and
compute confidence intervals for §. It can also be used to find the mean of the
posterior which can be used as an estimate of 6.

4 Mutable State

One could describe the association of an environment with a function as giving
that function state. We next explore the effects of being able to change that
local state information programmatically.

Both S and R are at heart imperative languages. Part of the problem with
them is that the assignment operator, <- is overloaded. The form of the as-
signment expression is generally, left—-hand-side <- right-hand—side. Where the
left-hand—side, when evaluated, yields a symbol while the right-hand-side yields
a value.

An operator is said to be overloaded if it performs more than one task. In R
and S the assignment operator performs two tasks. If the left side is a symbol
that already exists in the current environment then the value of that symbol
is changed to the right hand side. If the symbol does not exist in the current
environment then it is created and the value of the right hand side is assigned
to it.

Most programming languages separate these two tasks. Overloading them
can make programming easier but can also create serious problems in writing
compilers and in understanding the code. Consider the following unusual, but
legal code segment,

foo <-
function(x) {
if (x < 10)
y <- 12
x+y

¥

Now, one cannot determine whether y is a local variable or a global variable
until the function is evaluated. If x<10 then y in x+y is a local variable and
otherwise it is a global variable.

It can be argued that this overloading of <- forces us to have a second type of
assignment, <<-. In S the semantics of this operator are as follows. In the top-
level environment the symbol on the left hand side of the operator is assigned the
value given by the right hand side. If necessary the variable is created, otherwise
its value is changed. In R, the semantics are slightly different. Starting with the
current environment and searching up through the enclosing environments the
symbol on the left hand side is sought. If it is found then the value of the right
hand side is associated with it. If it is not found once the top-level environment
has been searched then the symbol on the left hand side is assigned to it.

15

4.1 Random Number Generators

Pseudo-random number generation is an important part of statistical comput-
ing. Two common uses are simulation and bootstrapping. Pseudo-random
number generators require a seed and for a given seed they produce a sequence
of numbers that, hopefully, has all the properties of a sequence of truly random
numbers. The difference between pseudo-random number generators and ran-
dom number generators is that given the same seed the pseudo-random number
generator will reproduce the same sequence. Since we only discuss pseudo-
random numbers we will drop the pseudo prefix.

With most random number generators the seed is updated for each random
number generated and in order to get the next number in the sequence you need
the last value of the seed. This implies that in order to implement a simulation
all routines which handle the random numbers need to have an extra parameter
passed to them, the seed. This is often not practical and instead the solution of
making the seed a global variable is taken. Having the seed be a global variable
can have some undesirable effects on the simulation since it makes the seed
accessible to every function and hence increases the likelihood of some function
inadvertently changing the seed. There is also a chance that the seed could be
reset to the original starting value. These sorts of occurrences can and usually
do invalidate the results of the simulation and hence should be guarded against.
Unfortunately there is seldom ever any evidence that such an event has occurred
and the results are accepted as if they were valid.

These problems can be overcome by the use of lexical scope. Lexical scope
allows an instance of the seed to be bound to a particular random number
generator and to be inaccessible to any other random number generator. Thus,
it cannot be altered inadvertently. The binding mechanism is sufficiently general
to allow the user to set the seed, query the seed and generate the next number
in the sequence through a collection of returned functions. But, the seed is
accessible only through these functions.

An example will clarify the situation. Consider the function: make.random.

make.random <-
function(seed)
list(rand =
function() {
seed <<- (9 * seed + 5) %% 1024
seed 1},
setseed =
function(nseed) {
seed <<- nseed 1},

getseed =
function() {
seed
}
)

16

The function make.random is a function that has one argument, seed and it
returns a list containing three functions: one to generate random numbers,
rand, one to set the seed of the random number generator, setseed, and one
to get the current value of the seed, getseed.

When make.random is invoked an environment is created and in this envi-
ronment the symbol seed is bound to the value supplied as an argument. Next
the list of functions is created. Each of these functions has the environment
with a binding for seed as its associated environment and hence can access the
current value associated with seed.

R> rand <- make.random(1)
R> rand$rand()

[1] 14

R> rand$rand()

[1] 131

R> rand$getseed()

[1] 131

Now rand$rand is a function and evaluating it produces a sequence of ran-
dom numbers. Again it is essential that in rand$rand the special assignment
operator <<- is used since this ensures that rather than creating a new variable
called seed the variable in the associated environment has a new value bound
to it.

Several versions of rand may exist simultaneously and as they will all be the
result of separate invocations of make . random their associated environments will
be distinct and each will have its own protected version of seed.

> randl <- make.random(1)

> rand2 <- make.random(101)
> randi$rand()

[1] 14

> rand2$rand ()

[1] 914

> randi$rand ()

[1] 131

We have created two random number generators, with different seeds, that do
not interfere with each other. Even with the call to rand2$rand between the
two calls to randi1$rand we see that we get the same sequence as above for
rand1$rand.

It is important to emphasize that this method ensures repeatability of the
simulation. There is no chance that the seed is corrupted by other outside
functions. But there is the possibility here (as with all other simulations) that
two different seeds generate sequences that have substantial overlap.

17

5 Concluding Remarks

In this paper we have argued the usefulness of lexical scoping and its conse-
quences in several situations that are important to statisticians. The use of
function closures being one of the more beneficial. These make it much easier
for statisticians to program complicated algorithms without having to delve too
deeply into the basic functioning of the language. In some ways one could argue
that this is one of the true strengths of S, that you can write programs without
having to worry about memory allocation or type-checking of variables. We
believe that lexical scope has large advantages and have incorporated it in R.

S has become a popular tool for statistical programming and research. It
has many strengths, among these the fact that it is a functional language with
functions as first class values. This means that functions can be passed to other
functions as arguments and they can be returned as values. We argue that this
latter property is very important but has been neglected mainly because of the
scoping rules used in S. Most modern functional languages use lexical scope. A
major reason for this is that these languages rely on the lambda calculus for
their theoretical underpinnings and the lambda calculus uses lexical scope.

One place where lexical scope has not been used but could potentially im-
prove the situation is in the modeling language used in both S and R. In the
current implementation the formula, y~x is simply a quoting mechanism. The
symbols y and x are stored and when the formula is evaluated they are treated
as symbols and the standard mechanism for matching them takes over. There
is no guarantee that they will be matched to the correct values. This problem
often catches the unwary. If formulae captured the current environment through
lexical scope then the modeling process would be much safer.

Acknowledgments

The authors would like to thank an Associate Editor and two referees for
their careful reading of a prior version of this manuscript. In particular for their
helpful suggestions that improved our examples and in some cases provided us
with better ones. We would also like to thank John Chambers, Mike Meyer and
Duncan Murdoch for their helpful comments on a draft of this paper.

6 References

Abelson, H., Sussman, G. J. and Sussman J. (1985). Structure and Interpreta-
tion of Computer Programs. MIT Press.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988). The new S Language:
A programming environment for data analysis and graphics. Wadsworth &
Brooks/Cole.

Gentleman, R. and Crowley, J. (1990). Smoothing censored data. Technical
Report 90-13, Department of Statistics and Actuarial Science, University of

18

Waterloo.

Thaka, R. and Gentleman, R. (1996). R: A language for data analysis and
graphics. The Journal of Computational and Graphical Statistics, 5, 299-314.

McCarthy, John (1960). Recursive functions of symbolic expressions and their
computation by machine, part 1. Communications of the ACM, 3,185-95.

Tierney, L. (1990). Lisp-Stat: An Object Oriented Environment for Statistical
Computing and Data Analysis. John Wiley and Sons.

A Lexical Scope in S

The following method of creating function closures in S closely follows sugges-
tions made by Luke Tierney on various mailing lists. A function closure can be
created in S by taking a base function and extending its formal arguments to
include the new bindings. The function should be written so that the body con-
tains free variables that will later have bindings supplied. An implementation
of this is given by the function MC below. It should be noted that this function
relies very heavily on the implementation of functions in S.

MC <-
function(f, env = NULL) {
env <- as.list(env)

if (mode(f) != "function")
stop(paste("not a function:", f))
if (length(env)>0 && any(names(env) == ""))

stop(paste("all arguments are not named:", env))
fargs <- if (length(f) > 1) f[1l:length(f) - 1]
else NULL
fargs <- c(fargs, env)
if (any(duplicated(names(fargs))))
stop(paste("duplicated arguments:",
paste(names(fargs),
collapse=", ")))
fbody <- f[length(f)]
cf <- c(fargs, fbody)
mode(cf) <- "function"
cf

19

