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Abstract

In this paper we discuss the analysis of multi-phase, or multi-stage, case-control studies
and present an efficient semiparametric maximume-likelihood approach that unifies and ex-
tends earlier work, including the seminal case-control paper by Prentice & Pyke (1979) as
well aswork by Breslow & Cain (1988), Scott & Wild (1997), Breslow & Holubkov (1997),
and others. The theoretical derivations apply to arbitrary binary regression models but we
present results for logistic regression and show that the approach can be implemented by
including additional intercept terms in the logistic model and then making some simple
corrections to the score and information equations from the prospective loglikelihood.

Keywords: Logistic regression; maximum likelihood; multi-stage sampling; response-sel ective sampling;
semiparametric efficiency; two and three-phase sampling.

1 Introduction

In a two-phase, or stratified, case-control study, a prospective cohort is stratified according
to some variables known for the whole cohort. Separate random samples of cases, i.e. units
with some characteristic of interest, and controls, i.e. units without the characteristic, are then
drawn from each stratum and values of other covariates are obtained for each of the sampled
units. In athree-phase study, some of the more expensive, invasive or difficult covariates are
not measured on al the units sampled at the second phase, but only on a subsample drawn from
them. This can result in considerable savings. Chatterjee & Chen (2007) point to the increasing
importance of such sampling designs in genetic epidemiology, where they can reduce the cost
of studies by limiting expensive ascertainments of genetic and environmental exposure to an
efficiently selected subsample of the main study.

The process can be continued indefinitely. Whittemore & Halpern (1997) discuss several
studies with three or more phases of sampling. For example, in a study to investigate the rela-
tionship of prostrate cancer risk to diet and other lifestyle characteristics, the cases were men
with a history of prostrate cancer and controls were men without such a history. Case-control
status was identified in the initial phase. Then, at the second phase, all the cases and a sample
of controls were asked whether or not they had a father or brother with the disease. Thisin-
formation was then used to draw the third phase sample in which more detailed information on
family size and structure, age at prostrate cancer occurrence or censoring, and place and date of
prostrate cancer diagnosiswas collected. Subjects who had three or more family members with
prostrate cancer were asked to participate in phase four, in which family members provided
blood and/or tissue samples for DNA analysis.

Multi-phase designs have other uses besides reducing the cost of sampling expensive covari-
ates. For example, adding an extra phase of sampling can provide an efficient way of making an
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after-the-fact adjustment for a confounder that was overlooked and not measured in the original
study. In fact, this was the motivation for White (1982) when she introduced the idea of two-
phase sampling. Similarly, if we have administrative or other population information available
on some variablesfor al individualsin the finite popul ation from which the study data has been
sampled, then efficiency can often be increased by considering the finite-population data as the
first phase and the study data as coming from one or more subsequent phases. The methods of
this paper may also be useful in some missing-data situations when, under missing-at-random
assumptions, the observed/missing mechanism can be thought of as corresponding to an addi-
tional phase of sampling. The missing data example of Arbogast et al. (2002), for example, has
exactly the same structure as a three-phase case-control sample.

What we are calling multi-phase studies have been more commonly called multi-stage stud-
ies in the biostatistics literature; see Whittemore & Halpern (1997), for example. Multi-phase
sampling is the term used in the survey sampling literature where multi-stage sampling already
has another well-established meaning; see Cochran (1977), for example. We follow Breslow
& Holubkov (1997) in using the survey terminology. We note in passing that the “two-phase’
designs of Breslow & Holubkov, in which theinitial phaseis a case-control sample, are actually
three-phase designs in our terminol ogy.

In this paper we present an efficient semiparametric maximume-likelihood solution for multi-
phase popul ation-based case-control studies that unifies and extends previous work by Prentice
& Pyke (1979), Breslow & Cain (1988), Scott & Wild (1997), Breslow & Holubkov (1997),
and others. In the main body of the paper we present the resultsin away that isintended to give
the reader an appreciation of the nature of the problem, the nature of the solution and how it can
be implemented. We will see that for logistic regression the approach can be implemented by
including additional intercept termsin the logistic model and then making some simple correc-
tionsto the score and information equations from the prospective loglikelihood. The theoretical
derivations and justifications are given in the Appendices.

2 Results

2.1 Review of two-phaseresults

Suppose that we have a binary response variable, Y, with unitswith Y = 1 being the cases and
units with Y = 0 being the controls, and a vector of potential explanatory variables, X. We
want to fit alogistic regression model with

et B

pi(z; B)=pr(Y =1]z;8) = T

(D)
for the probability that aunit with covariate values X = z isacaseand po(x; 3) = 1 — pi(z; 5)
for the probability of a control.

We start with a prospectively drawn cohort of NV units. In the first phase, we measure the
case-control status, Y, and the values of variables X ("), some or all of which may be included
in X, for all units in the cohort. We assume that all components of X () have finite support,
with X having possible values {z{", ..., z{"}. Let N,; be the number of unitsin the cohort
withY = hand X® = 2 for h = 0,1and = 1,...,I. In the second phase, we draw a
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simple random sample of n,; of these IV;,; units and measure the remaining components of X,
resulting in sample values {z;; for h = 0,1;i = 1,...,I; and j = 1,...,ny; }. Components
measured at the final stage may be discrete or continuous.

The full likelihood,

Nhs

hi j=1

depends not only on 3, the parameter of interest, but also on the conditional distribution of X
given X = 2 fori = 1,...,I. We are not interested in these distributions for their own
sake, and we are certainly not interested in modelling them in situations of any complexity, so
we want methods for making inferences about 3 that avoid the need for even thinking about
them.

The conditional maximum likelihood approach developed by Breslow & Cain (1988) and the
semiparametric profile likelihood approach developed by Scott & Wild (1997) are both closely
related to a simple prospective scheme in which units are examined sequentially, retained in the
sample with known probability r5,; if (Y = h, X = z{") and otherwise discarded. Under
this scheme, the probability that Y = &, given that (X = z{", X = z) and that the unit is
selected, would be

(v =h | X0 =20 X =)= Pr(x; B)Ths ' 5
P ( ’ ) pl(ﬂf;ﬁ)ﬁi +Po($§ﬁ)7"oz‘ @
Writing o; = log (1;/r0:) and using (1), we can expresspr(Y =1 | XM =2V X = z)inthe

form
eaiJr?CTﬂ

3)

Thisis the original logistic regression model (1) modified by the inclusion of stratum-specific
offsets. If our data had been generated by this slightly modified scheme, the log-likelihood
function would be

Pri(@; 6, B) = T

Z2(5) = Z logpzi(xhiﬁ O‘iaﬁ) (4)

h,i,j
where pf;, = 1—pj,, and estimation would proceed straightforwardly using an ordinary prospec-
tive logistic regression program by fitting model (1) with the a; = log (ry;/ro;) valuesincluded
as offsets.
Conditional maximum likelihood:

To adapt these ideas to actual two-phase case-control sampling, suppose that we estimate the
retention probability r; by the sampling fraction ny,; /Ny;, (¢ = 1,0) and thus «; by

nu/Nu
710@'/]\[0@'7

(5)

QoML =
the log of the relative sampling fractions. The conditional maximum likelihood estimator is

obtained if we maximize (4), with o, replaced by @; o, With respect to 3. In this context (4)
is only a pseudo-likelihood. The parameter estimates can still be obtained from an ordinary
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logistic regression program by fitting model (1) with the &; omr, values included as offsets.
However, additional computation is usually required to obtain valid standard errors.

Profile likelihood:
If the a;sin the modified model (3) are treated as free parameters, then (3) can be thought of as
the original logistic model (1) augmented by a set of unknown stratum-specific intercepts. By
adapting the results of Scott & Wild (1997), the profile likelihood estimator, /3, can be obtained
as follows. Take the likelihood that would be appropriate for fitting the augmented logistic
model (3) prospectively, add forcing terms ¢;(«;) to give

1

£;(¢) = 63(0575) = Z logp;‘m‘(l‘hij; Qg ﬁ) + Zci(ai)v (6)

hyi,j i=1

and then solve the resulting score equations for ¢ = (&, ). The forcing terms, presented in
equation (13) in Section 2.3, have the effect of pushing the unknown «; towards &; cy,. In-
ference using (6), including variance estimation and hypothesistesting, is very simple because
we can treat ¢5(¢) almost like an ordinary log-likelihood. We can obtain B by solving the
pseudo-likelihood equations, 9¢%/0¢ = 0, we can estimate cov(B) using the appropriate sub-
matrix of .J;(¢)~', where J;(¢) is the observed pseudo-information matrix, and we can treat
the appropriate differencesin —2¢; as chi-squared random variables to test hypotheses about 5.

The profile likelihood itself, ¢5(3), is obtained by maximizing the full likelihood over the
unknown conditional distributions of X given X ) = x?),z = 1,..., I treated nonparamet-
rically. The connection with Z5(«, 5) isthat (p(3) = 63{a(5), 3} with «(3) defined as the
solution of 0¢5(«, 3)/0a = 0. The proviso that ¢3(¢) can be treated “almost like an ordi-
nary log-likelihood” is needed because ¢ can correspond to a saddlepoint of Z3 rather than
a maximum so that we cannot obtain 3 by maximizing ¢;(¢) in general. The profile likeli-
hood estimator can be shown to have full semi-parametric efficiency so that it is more efficient
than conditional maximum likelihood; see Breslow, McNeney & Wellner (2003), Lee & Hirose
(2009). The differencein efficiency isoften small but there are situationswhen it is appreciable;
see Scott & Wild (1991), Lawless et al. (1999), for example.

2.2 Resultsfor three phases

Now suppose that only a subset of the remaining components of X, say X ®), are measured
at the second phase of sampling. We assume that X ) also has finite support, with possible
values {z\?, ... 2"} say. Let N,,;; be the number of second-phase sample units taking values
Y =h X0 =2 XO=zPforh=0,1;i=1,...,1;5=1,...,J. Notethat Nyy = ny.
Then, at the third phase of sampling, we draw a simple random sample of n;,; of these N;;;
units and measure the remaining components of X. Thisresultsin sample data {x ;;x, for h =
0,1, i=1,...,1,j=1,...,J, and k = 1,...,ny;} collected at phase three and alikelihood
of the form

J
TT {pr(v =2, X0 =)V TT {pr(X® = o |V = h, X = )V
hyi j=1

Nhij
X H pr(xhl-jk ‘ Y = h,X(l) = .I'(l),X(Z) = $§2))}] . (7)
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As with two-phase sampling, this contains the joint distribution of X as a nuisance parameter
and we want methods that avoid any need to model thisjoint distribution.

We can extend the profile likelihood method of the previous section directly. Again it is
based on arelated prospective scheme, now with

eaHrozijerTﬁ

J L 1 + eoziJraijerTﬂ’

as in model (3) but now with an additional intercept term for every cell of the X x X®
stratification used to classify the Phase 2 data. The extension of the conditional maximum
likelihood method is to estimate (5 by fitting model (1) by prospective logistic regression with
SIraIum-speCifiC offsets ai,CML -+ aij,C]V[L where &iLCML = log {(nuj/Nuj)/(nol'j/NOij)}. We
obtain the profile likelihood estimator essentially by expanding (6) to include an additional set
of forcing terms stemming from the phase three subsampling to form

G(a, B) = logphii(wnije; o, B) + Z ci(a;) + Z cij(aij), (9)
h,i, g,k

with pg,. = 1 — pj;;, and solving the resulting score equations as before. Expressions for the
forcing terms ¢;(«;) are given in equation (13). We will show that their derivatives, dc;/daoy,
increase monotonely from —n; to ng, crossing zero at &, carz. Thus the effect of the added
termsisto pull the o,-component of the solution of the pseudo-score equation towards & ¢ .-
Here, and in much of what follows, we have adopted the notational device of using ¢ to represent
an arbitrary cell either in the one-way classification defined by values of X or in the two-
way X x X @ classification.This notation also allows for extensionsto further phases where
needed.

Although ¢%(¢) is not itself atrue likelihood, we show in Appendix 1 that the profile likeli-
hood /() isequal to ¢5{ 3, a(3)} where a(3) isthe solution to 0¢; /0o = 0. A consequence
of this equivalenceis that, just as in two phase sampling, we can largely act as if the pseudo-
loglikelihood 035(¢) is the true log-likelihood for making inferences about 5. Specifically, we
can obtain 3 by solving the pseudo-score equations obtained by setting the derivatives of (9)
to zero, we can estimate cov(/3) with the appropriate submatrix of J; (¢) !, where J; (¢) isthe
observed pseudo-information matrix, and we can treat the appropriate dlfferenc&s in —2¢% as
chi-squared random variables to test hypotheses about 3.

To implement this, we need the first and second derivatives of ¢ with respect to the ¢. Let
us rewrite model (8) intheform

logit p7,;(z; ¢) = 2T,

wherethefirst T = (I+1J) elementsof ~ indicate the presence or absence of the corresponding
components of «, i.e. the first element of z;,;;, corresponding to a4, isequal to 1 if i=1 and O
otherwise, and so on. The final elements of z are made up of the elements of z. Then we can
write

ol
Us(¢) = 9 = Zniji {Yniji — p1(2nijn; 0) } + < g ) : (10)
hoigk
and
T () = CP(e) S nieelips (i) po(hie) — diag(A) 0 (11)
3 — 3¢3¢T — o hijk hijkpl hijk Po hijk 0 0 )



with ~ representing a7T-dimensional vector with components~,, A representing a’7’-dimensional
vector with components A;, and ;. = h. The quantities -, and A, are defined below in (12)
and (14). Equations (10) and (11) are just the usual score and information expressionsfor logis-
tic regression except for adjustments to the components corresponding to elements of o made
by ~ and the A;s.

It remains to define the elements of v and A;. If acell isfully subsampled, i.e. n;; = Ny,
and ng; = Ny, then oy = 0, () = 0, v = 0 and A, = 0. For cells that are not fully
subsampled, it is convenient to express ¢; and related quantities in terms of +,(«;), defined as

the unique solution of
N+ M Not — Mt
og| ——| —log| ——— | = ay. 12
g<N1t+%> g<N0t_%> ' (12)

This corresponds to the ~,-parameters used in Scott & Wild (1997, pp 60, 65, 68) where ~, was
shown to equal Ny, — N, the difference between the number of controlsin the population and
the number predicted by the fitted model. Working with this parameterization, rather than other
possibilities such as those used in Scott & Wild (2001), proved to be critical in obtaining the
results of this paper. It isshown in Appendix A1l that

ct(ar) = Nyglog(Nie + 7)) — naglog(nae + ve) + Notlog(Now — 7¢) — noe log(nor — 1), (13)

with v, = (o). Differentiating the expressions in equations (12) and (13) with respect to
ay, it followsthat ¢;(«) hasfirst derivative dc,/da; = , and second derivative d?c;/da? = A,

where .
Ny — nyy Not — no -

A = + ) 14

t { Mo )+ 7) T or = 7)o — ) } a4

Setting dc;/doy; = 0 leadsto oy = & o = log {(n1t/Nit)/ (1ot /Not) }. AS oy increases from
—00 to +00, () increases monotonically from —ny; to ng;, with derivative d-y, /da; = A;.

Computationally, we solve the pseudo-likelihood equations above using the Newton-Rhapson
method starting from the conditional maximum likelihood solution and .J(¢) is obtained as a
byproduct. The conditional maximum likelihood solution is obtained by performing an ordinary
logistic regression on the data from the fully observed units, i.e. those observed at Phase 3, but
including the appropriate offsets. To cater for the cases where there are fully subsampled cells,
we need to work with a reduced set of parameters ¢ = (&, ). Here, ¢ contains just the a;-
valuesfor cellsthat are not fully subsampled. We canwrite = B¢. Then, 0(*/0¢ = Bot* /0¢
and 920*(¢) /000" = B (9*0* /0¢dp) BT. Additionaly, $ = BT ¢. Some care is needed in
handling the data structures. A software implementation, in the form of an R function, R De-
velopment Core Team (2008), is available from Chris Wild.

2.3 Extensions

It is straightforward to extend these results to more phases of sampling and to other binary
regression models besides the logistic.

To handle S phases of sampling, we simply have to augment the model in equation (8) with
an additional constant term, o, and add a corresponding term, ¢; (), defined by equation (13),
to the pseudo log-likelihood in equation (9) for every cell of the XM x XM x . x X
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classification, assuming that X *) hasfinite support (s = 1, ...,S — 1). For example, with four
phase sampling, our pseudo model would have the form

logit{py;;. (@, )} = 2" B + i + oy + (15)

and the pseudo log-likelihood would be
G, 8) = Y logphiju(@nims o, B) + 3 i) + D cijloug) + D cirlaign).

h.i,jk,l i=1 i3 (N
We can then use /%(¢) to make inferences about 3 just as with two or three phases. To adapt
(10) and (11), the sums are taken over all individuals observed in the final phase of sampling
and v and A are lengthened in the obvious way.

The extension to non-logistic binary regression modelsisaso simple. Suppose that pr(Y =
h | z) = pn(z; 3). Then wejust replace 273 in the definition of prj,(x; ¢) by logit{p, (x; 5)}
and proceed exactly as with the logistic. Thus, in four phase sampling, (15) would be replaced
by

logit{py;;x(a, )} = l0git{p:(x; B)} + cvi + auj + i

All the results for the logistic case, apart from the simplification discussed in the next section
that results when the model contains appropriate dummy variables, then apply immediately.

2.4 Special cases

Prentice & Pyke (1979), following earlier work by Anderson (1972), showed that for the two-
phase case-control studies(S = 2) where thelogistic model has aseparate intercept 3, for every
level of XM, maximum likelihood inferences about all the coefficients except the intercepts can
be obtained by running the sample data through a standard logistic regression program without
any modification. Semiparametric efficiency followsfrom Breslow, McNeney & Wellner (2003)
and Lee & Hirose (2009). If terms &; = log{(n1;/N1;)/(noi/No;)} are added as fixed offsets,
then estimates of the /3;s are also valid and the variances can be corrected by subtracting n;" —
Ni;' 4 ng; — N;* from the estimated variance of [3,; from the logistic program.

The situation where the first phase of a three-phase study is a ssmple (unstratified) case-
control sample and our model (1) includes an intercept, 3, say, is another special case of inter-
est. Here I = 1 and Breslow & Holubkov (1997) noted that for making inferences about all
coefficients except (3, we can act asif we had an two-phase study with a prospectivefirst phase.
Thiswas explored further in Lee, Scott & Wild (2007).

We now consider three-phase sampling more generally. Setting 35, = (o + «; and o =

(a1, a1, . .., ary)T, we can write the model in expression (8) in the form
logit{p},(z; o, ")} = ay + 2" 3%,
where ¢ ranges over al possible values of (i,5) fori = 1,..., 7 andj = 1,...,J. In other

words, the three-phase model (8) can be rewritten in the form of the two-phase model (3) with
X replaced by X*() = (XM X®) taking I* = I.J possible values. Then the three-phase
pseudo log-likelihood (9) can be written in the form

(5(¢) = £5(67) + >_ cilaw),
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with ¢* = (o, 5*) and ¢} as in equation (6). It follows that the pseudo-score equations,

ol;(4)/0¢ = 0, become

. dCZ‘(OJi)
0¢* dOdZ'

=0, forl=1,...,1,

and the pseudo-information matrix becomes

0?0
Ji=——2_ =Dy J;
3 a¢a¢T 0 @ 29
where J; = —% and D, isan I x I diagona matrix. Thus, to make inferences about

components of 5*, and hence about all the components of 5 apart from the constant terms, we
can treat ¢5(¢*) as atwo-phase pseudo-loglikelihood. This can be useful asit does not require
knowledge of the N,,;s. If we want to estimate 3y;, and we do know the Ny;s, then we need to
subtract &; car, = log{(n1:/N1i)/(n0i/Noi) }, the solution of de;(a;)/da; = 0, from 55, and
subtract ny;' — Nj;' +ng;' — Ny;* fromthe variance of 3, estimated from the two-phase program
exactly asin the ssimpler case above.

More generaly, it can be shown that where the model has a separate intercept for every level
of XM x ... x X for some s < S, then the analysis can be reduced to that for (S — s) phases
with offsets and variance adjustments needed where estimation of the interceptsis of interest.

3 Example

We use the Wilm’'s tumor data described in Kulich & Lin (2004) to illustrate the method. The
studies from which the data originated were performed by the US National Wilms Tumor Study
Group (DANgio et al., 1989; Green et al., 1998). Wilmstumor isarare kidney cancer occurring
in young children. The data relates to 3,915 children who had been treated for Wilms tumor.
We take as our binary response variable “relapse within 3 years’. The explanatory variables
available were histological type of the tumor, classified as favorable versus unfavorable, stage
(I — 1V), age at diagnosis, and tumor diameter. Breslow & Chatterjee (1999) worked with a
dlight superset of this data set, but without the age and tumor diameter variables, to construct
two-phase data.

Quoting from Kulich & Lin (2004), “Histological type was assessed in two ways. Patholo-
gists at the individual sites analyzed a tumor sample and determined a preliminary local histo-
logical type. Each sample was then sent to a central facility, where an experienced pathol ogist
reevaluated it. This reevaluation was an expensive and time-consuming process. The central
assessment can be considered the ‘true’ histological type, and the local assessment can be con-
sidered an imprecise surrogate.” Although central histology was obtained for all patientsin the
study, Breslow & Chatterjee (1999) and Kulich & Lin (2004), performed analyses on two-phase
data sets obtained post-hoc by subsampling and only using the central histology of subsampled
patientsin their analysis. They did thisto show how well you could do with acheaper two-phase
study that only obtained the expensive measure, central histology, for a subset of patients.

We do the same thing here. We will use tumor diameter to play the role of a variable, e.g.
genetic, that is even more expensive than central Histology and will only be obtained at Phase 3.



Unfavourable histologies are coded “1” and favourable are coded as“0”. We set up 24 Phase-1
strata defined by Institutional histology (Inst), Stage and 3 levels of Age (Age < 1, 1 < Age
< 4 and Age > 4. The numbers of controls and cases falling into these strata are given in the
Ny; and Ny; columns of Table 1. Thisisthe Phase 1 information. There were 3312 controls and
603 cases at Phase 1. At Phase 2, ng; controls (i = 1, ..., 24) and all cases were taken and the
value of central Histology obtained. We sampled ny; = 100 unitsfrom any cell with Ny; > 100
and retained all unitsin cells with Ny, < 100. This resulted in 1248 controls and 603 cases
being observed at Phase 2. Crossing the new variable, central Histology, with the original set of
24 strata now produces 48 strata. Of those sampled at Phase 2, the numbersfalling into each of
these 48 strata are given in the Ny, No;1 columns of Table 1 for controls and the corresponding
Ni40, N1;1 columnsfor cases. At Phase 3, we sampled ng;; controls with unfavourable (central)
Histology and n,, controls with favourable Histology. We subsampled 25 unitsin cells of more
than 25 and took all unitsin smaller cells. Cases with favourable histology were subsampled in
the same way. The new variable observed at Phase 3 was Tumor diameter.

Below we present comparative results for a model that fits the full data quite well. The
standard errors presented for 3-phase sampling are averages over 1,000 replications of the pro-
cess of drawing second and third phase samples. We have to expect some loss of information
because values of our “most expensive’ variable are only collected for a 25% subsample. If we
had analysed arandom 25% subsampl e of the full data we would expect, on average, adoubling
of the standard errors. We are doing a lot better than that for many of the variablesfitted. Even
for Tumor diameter, which was only collected at Phase 3, and itsinteraction with Stage, thereis
only a40% increase in standard error. We have aimost full efficiency for some of the variables
collected at Phase 1 or even central Histology which was only collected at Phase 2. Of course
institutional histology, collected at Phase 1, isavery good surrogate for central histology which
was collected at Phase 2.

4 Discussion

Multi-phase sampling has a considerable potential for delivering efficiency gains for case-
control studies. This paper unifies and extends the methodology for specia cases of multi-
phase case-control studies given by Prentice and Pyke (1979), Scott and Wild (1997), Bres-
low and Holubkov (1997), Lawless et a. (1999) and Lee et a (2007) to provide a general
semiparametric-efficient solution to the problem of analyzing multi-phase case-control studies
that collect discrete or continuous covariate information at the last stage of sampling and dis-
crete covariate information at previous phases. The methods are relatively easy to implement,
particularly in the case of logistic regression where we have shown how to make relatively
minor modifications to the score vector and information matrix for ordinary prospective logis-
tic regression. The need for covariate data used in al but the last phase to be discrete is an
important limitation.

All of our asymptotics are carried out under the assumption that the model to be true. Asa
referee has pointed out, however, it would be beneficial to investigate whether the asymptotic
methods of Newey (1994), which allow for fairly general model misspecifications, can be gener-
alized to multiphase case-control studies. Asas shown in Scott and Wild (2002), the parameter
estimated by semiparametric maximum likelihood from a case-control study will not generally



Table 1. Three-phase sampling counts

Controls Cases

Ph 1 Phase 2 Phase 3 Ph 1 Phase 2 Phase 3

Phase 2 Hist Hist Hist Hist

strata 0 1 0 1 0 1 0 1
Inst Stg Age Noi noi  Nowo  Noit noio moit N nui Nuo Nig nuo naa
01 <1 387 100 100 0 25 0 35 3H 32 3 25 1
0 1 (14 672 100 97 3 25 3 49 49 48 1 25 1
01 >4 283 100 97 3 25 3 36 36 35 1 25 1
0 2 <1 78 78 76 2 25 2 9 9 8 1 8 1
0 2 (14 432 100 96 4 25 4 60 60 56 4 25 4
0 2 >4 254 100 96 4 25 4 66 66 58 8 25 8
0 3 <1 40 40 37 3 25 3 4 4 4 0 4 0
0 3 (14 337 100 100 0 25 0 37 37 34 3 25 3
0 3 >14 296 100 99 1 25 1 63 63 55 8 25 8
0 4 <1 1 1 1 0 1 0 5 5 3 2 3 2
0 4 (14 141 100 97 3 25 3 3 33 31 2 25 2
0 4 >4 162 100 98 2 25 2 53 53 48 5 25 5
11 <1 8 8 1 7 1 7 8 8 0 8 0 8
1 1 (14 36 36 4 32 4 32 7 7 1 6 1 6
11 >4 19 19 1 18 1 18 3 3 0 3 0 3
1 2 <1 4 4 0 4 0 4 7 7 0 7 0 7
1 2 (1,4 32 32 5 27 5 27 11 11 0 11 0 11
1 2 >4 25 25 4 21 4 21 15 15 0 15 0 15
1 3 <1 2 2 0 2 0 2 17 17 0 17 o 17
1 3 (14 41 41 8 33 8 33 21 21 0 21 0O 21
1 3 >4 26 26 6 20 6 20 22 22 2 20 2 20
1 4 <1 0 0 0 0 0 0 12 12 0 12 0 12
14 (14 2 22 13 9 13 9 15 15 2 13 2 13
1 4 >4 14 14 9 5 9 5 15 15 2 13 2 13

Totals 3312 1248 1045 203 327 203 603 603 419 184 247 181
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Table 2. Full-data analysis compared with 3-phase analysis

Full data 3-phase Ratio

Estimate se z Estimate se z of ses

I ntercept -4.08 0-390 -104 4.02 0538 75 138
Histology 1.30 0125 104 1.33 0133 100 1.06
Stage 081 0149 55 0-86 0204 42 137
Age<1 -0.29 0180 -16 -0.26 0187 -14 104
1 <age<4 -0-47 0102 -46 -0-47 0105 -44 1.03
Histx Age <1 1.77 0347 51 161 0351 46 101
Tumor diam: 014 0031 46 013 0045 30 145
Stagex Tumor -0-04 0012 -34 -0.04 0017 -26 142

[3-phase results are means from 1,000 subsampl es]

be the same as the parameter estimated from from complete-cohort data when there is model
misspecification. Using the broader form of asymptotics would, for example, facilitate investi-
gating asymptotic efficienciesin away that penalises departures from the compl ete-cohort limit.
Theissues are subtle, however, and our earlier work casts some doubt on whether thisis always
the relevant comparison. We hope to explore thisin the future.

Appendix 1

Derivation of the estimating equation

All derivations are for an arbitrary regression function of theform py,(z, 5) = pr(Y =h | X =
Set X7 = (X x@7 x®") and assume first that X ® has finite support, taking on values
2. Let Ny, denote the number of times the value =\* appears in the hij stratum and let
prige(B) = pr(Y = b | XU = 2V X® = 2 Xx® = 4Y). We parameterize the log-
likelihood in terms of the basic parameters g;;, = pr(X® =z | X = &V x@ = ;).
;= pr(X@ =2 | X0 = 2y and ¢; = pr(X® = z"). Itis convenient to introduce the
notation

Unig = 3 pnige(B)gin = (¥ =h | XU =2V x® = 2),
k

Thi = > Unij&i; = pr(Y = h| X = xz(l))‘
J

Then from equation (7) in Section 2.2 and recalling that N,;, = ny;, thelog-likelihood is

03,¢.¢9) = Z Nhijk 108 Priji(B) + Z(Nhi — i) log Ty + Z(Nhij — Nhij) 108 Vi
hijk hi hij
+ Z Ny log fz‘j + Z Niijk log Gijk + Z Nyilog ;. (16)

ij ijk i
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We want to maximize ¢(3, ¢, &, g) with respect to ¢, £ and g to obtain the profile likelihood of
(5. We see that terms involving 3, which is the quantity of interest, cannot be factored out from
the nuisance parameters ¢ and the g;;;,’s, which are of little or no interest in their own right.
However, the parameter  is orthogonal to the other parameters, and can be ignored in what
follows. Accordingly we drop the last term from the log-likelihood and write £(3, &, g).

We introduce L agrange multipliers n; and 7;; to take care of the constraints >, &;; = 1 and
>r 9i;x = 1. Differentiating (16) with respect to ¢;; and setting the result equal to ; leads to

4 N (N — 1) = ;. (17)

Multiplying (17) through by &;; and summing over j givesn; = N.; so that the maximizing
values of &;; satisfy

Nyij
E thwhu

Thi
where pu,; = Nijmp; — (Np; —npi). Similarly, differentiating (16) with respect to g5, and setting
the result equal to 7;; leadsto

§ij = (18)

Nijk fz
g—:]i + Z { th nhz)_h + (th nhij)/whij} Dhijk = Nij- (19)

Multiplying (19) through by g%, summing over k and applying (17) then givesn,; = N.&;;.
Thus the maximizing values of g, ;;, satisfy the equations

Nijk
Gijk = ; ) 20
o E szphz]k(ﬁ) ( )
where
thij = NyijThij — (Nuij — Nnij)
i%hij/ Thi
S Phithij [ Th ' (21)

oitois [ Toi + p1it1i /T

Substituting the expressions (18) and (20) for &;; and g, into (16), we obtain the profile likeli-
hood

Cp(B) = > nnijelog Phiin(B) + Y (Nhilog Thi — npi 10g fin:)
hi

hijk
+ > (Nnijlog Thij — npij 1og finij) (22)
i
where i
) G, Phish
higk E Z,ijhz]k

Note that (21) and the fact that ,; = 1 imply that

Whiﬂhij/Mhi
> Whiﬂhij/uhi

whij =
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so that /p(3) is a function of the n’s. These parameters are not free, but rather satisfy the
eguations

> NgigkPhigr = Hhigs Y NaigThig = fnis (23)
k J

which come from substituting the expressions from (18) and (20) into the definitions of 7,; and
wijk-

We have reparameterized our profile log-likelihood in terms of the 7’s, which must satisfy
the equations (23). Since 7, = m4;; = 1 thereare I + I.J free parameters. Next, we introduce
afurther parameterization corresponding to that used by Scott & Wild (1997) in the two-phase
case. Puty; = Nyym;— Ny andy;; = Nogjmyj— Ny Then py; = ny+y; and g = nagi+7i,
and the profile log-likelihood can be written in terms of these new parameters as

(p(B) = Z Nhijk logpzz‘jkz(ﬂ) + Z ci(ay) + Z Cij(Oéij)
hijk i hij
where o is defined as a function of ~, by (12) and ¢; is given by (13). Here, asin Section 2.2,
we use the subscript ¢ to mean either i or the double subscript ij. In terms of a4, pj;;, can be
written as
|Og|t(p’l‘wk) = |Og|t(p1”k) + oy + Q.
The conditions (23) can be written in terms of the~,’s as

Z n+ijkp1<ijk = N1ij + Yijs Vit = YVi- (24)
k

Now consider the function ¢ defined by (9), where the ;' s are regarded as free parameters. We
have shown that

tp(P) = 645, a(B)},

where the elements «; of () are given by (12), and the ;s satisfy equations (24).
Finally, we show that the equations (23) are implied by the derivative conditions 9¢; /0a, =
0. We have 6&’;/805” = N1jj+ — Zk nﬂjkp’l‘ijk + Yij, SO that 3@;/80@ =0 ImplleSthe first part
of (24). Similarly,
o
00@

=Ny — Y NyijkPlik + Vi
Jk
Thus, adding the equations 9¢;5/0c;; = 0 over j giVes ni .y = > NyijkPli, + Vi SO that
a3/ 9a; = 0 and L% /dev; = 0 imply equations (24). Itfollowsthat 3 = argmax £p(3)argmax £5(5, a(3))
isfound by solving the estimating equation %—% =0, where ¢ = (87, aT).
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Appendix 2

Establishing the efficiency bound

In this Appendix we establish the asymptotic efficiency of the semiparametric maximum like-
lihood estimate obtained by solving the estimating equation considered above. We begin by
calculating the asymptotic variance of (.

Asymptotic variance of the estimate
0%
9pog™”
where all derivatives are evaluated at the true values ¢(»). The reason for this non-standard

normalization will be come clear below. It can be shown (see Scott & Wild 2001, Lee, Scott &
Wild 2006, 2007) that

lim NCOV(B) = {]Eﬂ - ]Ea(];a)_llzﬂ}_l7 (25)

Np—o0

where [* is partitioned in accordance with («, 3). This result follows from the fact that, un-
der suitable regularity conditions, the solution ¢ of 9¢*0¢ = 0 is asymptotically normal with
asymptotic variance 7*~'¥.7*~! where the matrix ¥ is of the form

S=1—1 (()T D)I

for some matrix D. Thus, the asymptotic variance of gE IS

*—1 0 0
(v p)

and it follows from the partitioned matrix inverse formula that the asymptotic variance matrix
of g isgivenby (25).

We now derive an explicit expression for I* under a different but equivalent three-phase
sampling scheme. Suppose that

1. (Phase 1). We take a random sample of N individuals from the population of cases
and controls. Then {Ny;}, the number out of N withY = hand X® = 2, have a
multinomial distribution with probabilities Aj; = pr(Y = h, X® = z). Thisisthe
same as the original sampling scheme.

2. (Phase2). Forh =0,1andi; = 1,..., I, wetakeny,; individuals sampled, independently
of what happens at Phase 1, from the conditional distribution of X ?) = :rf’, givenY =
hand X = 2V, Let Ny; be the number of these having X® = 2. Then the
{N};;} have amultinomial distribution with probabilities A,,; = pr(X?® = $§2) |Y =
h, XU =2y,
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3. (Phase 3). Forh = 0,1andi = 1,...,1, 7 = 1,...,J, we take a sample of ny;;
individuals, independently of what happens at Phase 2, from the conditional distribution
of X®, givenY =, XM = 2V X® = 2!? with density

phz’j(xaﬂ)gij(x(g))/whija
where g;; is the conditional density of X® given X = &V, X@ = 2 and ¢, =
pr(Y = h | XU = 2V X® = 2Py = fp(a, 5)g;(2®) de®. We denote con-
ditional expectation with respect to X®), given Y = h, X1 = 2V X® = 27 py
Ehij-

This sampling scheme has the same likelihood, and hence the same asymptotics, as the one
considered previoudly. Thus, if an estimator is efficient under the new sampling scheme, it will
be efficient under the old. For a proof of this for two-phase sampling, see Lee (2007). The
general case for arbitrary S is essentially identical.

We work with this new scheme for the remainder of this section. We consider asymptotics
where N/Np — w, npi/Np — wy; and ny;; /Ny — wp;;. Corresponding to the fact that
Np; > ny; and Np,;j > ny; in the original scheme, we will assume that wA,(f? > wy; and
whiA% > wy,;. Here, we are using the additional superscript O to denote the true value of the
corresponding parameter. We also let W,S?) denote the true value of the conditional probability
pr(Y =h | X0 =21y,

_ quer the new sc_heme, and apply_i ng the law of large numbersdirectly to N, ! %ﬁf, where
% isgiven by (equation10) , we obtain

. 8% log pj;;(X®), )
I = = wyjEnj { 8;€J9¢T }

hij

0 log pjr;;(X @), ¢) 00
- _th”Eh”{ 96057 } - ( 0 A )

hij

2 2
0 C; 0 Cij

- Z DpOST o Z DPOHT

7 iJ

where Aisa(I+1J)x (I +1J) diagona matrix with entries A;, since 9%c;/0a20; /0oy = A;.
Using the identity

Plogh 1 0*h  0Jloghdlogh

06067 — hdddeT  0p 0T

E 7Y T x - - 07
" {pzij 060"

and noting that

we finally obtain

[* = thithij (26)

hij

alongij(X(g)agb)alongij(X(3)7¢) 0 0
{ d¢ Fra } a < 0 A ) '

A general result
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We first describe a general result that shows how an efficiency bound can be calculated.
Suppose that we have independent observations z of .J different types, with respective densities
fi(z,8,v) for j = 1,...,J where 3 is afinite dimensional parameter and - can be infinite-
dimensional. Then if 3 is a regular asymptotically linear semi-parametric estimate of /3, the
covariance matrix of 3 must satisfy var(@) > B where B is the semi-parametric efficiency
bound. The matrix B may be found as follows. Consider the “expected population log likeli-
hood”

ijEj{logfj(Z,ﬂ,’Y)}, (27)

where E; denotes expectation with respect to the true density f;(z, 5, v(©), and the weights
are the limiting proportions of the different types of observations. For fixed /3, let v(53) be
the maximizer of (27). Thisis called the “least favourable distribution” for the problem. The
“efficient scores’ S’ are given by

dlog f;(z, B,7(8))

St = L og=1,...,J
’ op B=B)
and the efficiency bound is given by
Zw] S*S*T )

Thus, to establish the efficiency of our procedure, we need only show that the asymptotic vari-
ance of our estimate coincideswith B. Thisapproach to semi-parametric efficiency is described
in Tsiatis (2006) in the case of a single population, and extended to more than one population in
Lee & Hirose (2009). The characterization of the least favourable distribution as the maximizer
of an "expected log-likelihood” was first considered by Newey (1994). Newey’s formulationis
more general than the one considered here, in that it makes no assumption that the parametric
part of the model is correctly specified, asisthe case in the Tsiatis formulation.

Application to three-phase sampling

Now we apply the theory sketched above to regression models for data obtained by the
modified three-phase sampling scheme described in the previous section. The results obtained
also apply to the original three-phase sampling scheme.

First, we parameterize the distributions in phases 1 to 3 of our sampling scheme in terms
of the conditional densities g;;(z\") of X®, given X(l) = 2V and X@ = x(2 the con-

ditional probability ¢;; = pr(X® = f | X® = 2y and the unconditional probability
¢ = pr(X® = "), Thefirst phase distribution is

Ahi = WhiCi-

For the second phase, the distributions are
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where
whij = /phij(x:ﬁ)gij(x(:g))dx(g)a
Thi — Z¢hijf¢j-
J

Finally, the third phase distributions have densities
phij(xa ﬁ)gzj (x(g))/whij-
The “expected log likelihood” is, up to a constant not involving ¢;, &;; of g;;

Z UJAS? log Ap; + Z whz‘AEL(Z‘ log Api; + Z Wi Enijllog gij(X(g))/¢hij]- (28)
hi hij hij

Finding the least favourable distribution
To find the |east favourable distribution, we must maximize (28) over the g,;’s and the &;;’s
for fixed 3. Recall that p,;;(z, 3) depends on = only through =®. Asin AL, the parameter ¢;
can beignored in what follows. From Appendix 3, the maximizing values satisfy the equations
Py(z®) g<9> (2®)
Zh Z:U((g phzj( ﬁ)7
w)

Son i (8)nii (B) ) mri(B)

i (¥, 3)

(29)

&i(8)

(30)

where

Wh
Pz](x(?))) = Z h();phm(l' ﬁ )
h ¢h1j

and w® =Y, whiA%. The quantities fux;, finij, Thi, Thi; are scaled limiting versions of those

considered in Appendix 1, and are defined in terms of further quantities ~; by

@UAES) + 0nyi
wAY)

whiAl(fZ' + 0nYij

[hi = Whi + 0nYi,  Thi =

J

Phij = Whij + OnYijs  Thi =

J

whiASSi)j
where we have written 6, = +1 accordingash = 1 or 0. Also, asin Al, let

logitp;,; (2, ¢) = logitpy; (2@, B) + o + vy,

(25 ) ()
WAy + i WAy — i

a;; = log ( W15 + Vij ) ~log ( Woij — Vij )
i 0) 0 .
qu(ug + Yij wOiA(()z‘} — Yij
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The quantities +, satisfy the equations

Yi+ = Vi /phj ij (3))95] (x (3)) dz®) = W15 + Vij- (31)

The proof of these assertionsis amost the same as that given in A1. Note that the +,’s, and
hence the «,’s, are functions of 3, although thisis suppressed in the notation. When 3 = 3(©
then v, = 0 isasolution of equations (31).

For the first distribution, the efficient scores are

8log JAVY 1 a’%
Tog s =0 m g

For the second distribution, the efficient scoreis

dlog Apij | _5 1 Oy 1 Oy
o6 T T\ waD 98w 9P

and for thethird

dlog Dhij (z, )
op Whyj B '

8B logpm] (x, 5)913( )/whz’j

Note also that

0 logp?;ij(X, ) L Oy
Ehij 5h .
B wrij 08
Thus, the inverse of the information bound B is, writing z®2 for zz7,

®2
_ 1 0y @2 1 87 1 0
Bl A© Al wA® ij i

hz]

dlog pi. (X 1 v
+thijEij{< 8 Phi; (XY, 9) s %)

oy op Whi; OB

Dlog ph;(X®, 9)\** e 07\
- T | () ) () -z (3)

v

1 1\ 1 1\
D

1ij

and all derivativesare evaluated at 5 = 5. Since 9,/93 = (0, /0ca;) A, wefinally obtain

al *i' X(3)7¢ = a i 8 ij @2
o [P () ()

hij

where

Since ¢ = (87, a(B)1), the chain rule and (26) imply that

T T
v () e () (G) () e
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To calculate g—g, let £ be the expected log-likelihood (28). Then, by the resultsin Appendix 3,
for each fixed 5 we have

£(8.€,9) = £ (B, a(P))
where £* isgiven by (35) in Appendix 3. Using the same arguments as those used in Appendix
1 for the sample case, a(3) satisfies

9E* (B, )

=0
Oa

a=a(f)

for each 5. Differentiating again by the chain rule, we get

82E*(B, a) aa>T 82E*(B, a)

op = 0.
9Bda” B=B) a=a () <3ﬂ dada™

B=p),a=a(B)

Thus, by (28), we get I§a+<a—&> I =0

aﬁ (763
sothat 9a/0B = — (I%,)”" I%,. Substituting thisinto (32) showsthat B! = I,—I5, (%) " 15,

and so by (25), the estimating equation leads to asymptotically efficient estimates.

Appendix 3

Maximizing the expected log-likelihood

Again, we begin by assuming that the support of the variable X ) isfinite. By following the
same argument as in Appendix 1, the Lagrange multiplier argument suggests that the maximiz-
ing values of g;; and &;; satisfy (29) and (30). In fact, this remains true even when the support
of X®isnot finite, at least for values of 3 in a neighbourhood of 3(°). We now verify this.

For g,; and 5‘” as defined in (29) and (30), and for arbitrary densities g;; and probabilities
&ij, we must show that

thzAgB logAh’L] Z hZ] /loggz_y( ())phz](x ﬁ )gz] ( dx(g thz] Inghm(ﬁ)

hij hij hz] hij
> Z whzl hz] lOg Ahz] Z hZ] /lOg gZ]( ® ))phz] (.CI? ﬁ )gz] ( dx(g Z whzg IOg whz]* (33)
hij hij hl] hij
where ;" = [ gi; (@) prij(z, B) da® and A}, = i *&ij/ X5 bni” & Theinequality (33)
isequivalent to

ORPNAYEY Dnij. i 95(=) @y O @y g6
S log T =3 ung log £+ 5 ! [ 10g Py(@®)g P (@®) dz® > 0.(34)

j x —((3)
h/Lj Ahzj hZ] whz] hz] h’L] g’Lj (x )

When 8 = 89, g;;(2®, 8) = g (z®) and A;; = ALY

i » the left hand side of (34) becomes

®)
1 1 3 gZ x
thzAﬁij log }” — > wpyj log h] = ]”/1 J Pw(x( Ngd (@) da®

hij hZ] hij hij hij hz]
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An argument based on the Kullback-L eibler information inequality shows that

(0)

whm / log g” ($(3)) 0)/,..(3) (3) 1%‘;‘
g;i () dx' > wy,; log =

h” 9i( 95(3 ’ ’ (Y

provided g;; # gij . Moreover, the Kullback-Leibler inequality implies that

(0)

> w Ahza log —+ il > 0.
hij Ahzj

Hence, the right-hand side of (34) isstrictly positiveat 5 = 5%, and by acontinuity argument is
non-negative for all 3 in some neighbourhood of 5. Thus, (29) and (30) do indeed maximize
the expected log-likelihood. Substituting these maximizing values back into (32), we get the
analogue of (22) for the expected log-likelihood:

£(B,€,9) = (B, a(B))

where
EX (B, Z Whij Enizllog prii( X(3 )]+ Z cilag) + Z cij(ag). (35)

hij
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