Chapter 9: Equilibrium

In Chapter 8, we saw that if {Xy, X1, Xo,...} is
a Markov chain with transition matrix P, then
X;~nl = X, ~nlP

This raises the question: is there any distribution 7 such that 7w’/ P = «7?

If 77 P =x", then

X,~7ml = Xiy1 ~ n'pP=mn"
=  Xpon~ al'pP=nx"
= Xys~nlP=mn"
=

In other words, if #” P = T, and X; ~ w”, then
X~ Xppr~ Xppo ~ Xypg~ oo

Thus, once a Markov chain has reached a distribution 7”7 such that 77 P = =7,
it will stay there.

If 7P = 7T, we say that the distribution 77 is an equilibrium distribution.

Equilibrium means a level position: there is no more change in the distri-
bution of X; as we wander through the Markov chain.

Note: Equilibrium does not mean that the value of X;,; equals the value of X;.
It means that the distribution of X;,; is the same as the distribution of X;:

e.g.IP’(XtH = 1) == ]P(Xt = 1) — 7Tl;

P(Xy1=2)=P(X;=2)=m, etc.

In this chapter, we will first see how to calculate the equilibrium distribution 7w” .

We will then see the remarkable result that many Markov chains automatically
find their own way to an equilibrium distribution as the chain wanders through
time. This happens for many Markov chains, but not all. We will see the
conditions required for the chain to find its way to an equilibrium distribution.
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9.1 Equilibrium distribution in pictures

Consider the following 4-state Markov chain: 05
0.0 0.9 0.1 0.0 0-10 ' Qo.
0.8 0.1 0.0 0.1

0.0 0.5 0.3 0.2 '
0.1 0.0 0.0 0.9

(4%

pP—

Suppose we start at time 0 with
X ~ ( 1 l): so the chain is equally

1°7°4°14
likely to start from any of the four states. Here
are pictures of the distributions of Xy, Xq,..., X4: U 0.9

PXg=2) PXi=2) PXy=2) PXs=2) PX;=1)

0.4
0.4
4

0.3

0.2

0.1

0.0 0.1 0.2 0.3
0 0.1 0.2 0.3

0.0

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

The distribution starts off level, but quickly changes: for example the chain is
least likely to be found in state 3. The distribution of X; changes between each
t=0,1,2,3,4. Now look at the distribution of X; 500 steps into the future:

P(X500 = 113) P<X501 = 33) P(X502 = 1}) IP)(X503 = QZ‘ ]P)(X504 = fL’

< < < = =
o =] S [S] [S]

o o S o S
N N N N N
o <] S <] S
bl bl bl < bl
o =] S [S] [S]

o o o o o
S) S S S S
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

The distribution has reached a steady state: it does not change between
t = 500,501,...,504. The chain has reached equilibrium of its own accord.



THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 1 76

9.2 Calculating equilibrium distributions

Definition: Let {Xy, X1, ...} be a Markov chain with transition matrix P and state
space S, where |S| = N (possibly infinite). Let w7 be a row vector denoting
a probability distribution on S: so each element 7; denotes the probability
of being in state ¢, and Zf\il m; = 1, where m; > 0 for all . = 1,..., N. The
probability distribution 7w’ is an equilibrium distribution for the Markov chain
if 7P =nT,

That is, 7! is an equilibrium distribution if

N
(Tl'TP)j:ZT('ipij:’ﬂ'j fora”jzl,...,N.
1=1

By the argument given on page 174, we have the following Theorem:

Theorem 9.2: Let { X, X, ...} be a Markov chain with transition matrix P. Sup-
pose that 7w’ is an equilibrium distribution for the chain. If X; ~ 7’ for any ¢,
then X, ~ «! forallr > 0. O

Once a chain has hit an equilibrium distribution, it stays there for ever.

Note: There are several other names for an equilibrium distribution. If w7 is an
equilibrium distribution, it is also called:

e invariant: it doesn’t changex™ P = =’
e stationary: the chain ‘stops’ here.

Stationarity: the Chain Station

a train station is where a train stops

a workstation is where . . . ? ? ?

a stationary distribution is where a Markov chain stops
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9.3 Finding an equilibrium distribution

T

Vector 7' is an equilibrium distribution for P if:

1. wfp=xn';
2. YN i =1;
3. m; >0 foralli.

Conditions 2 and 3 ensure that ! is a genuine probability distribution.

Condition 1 means that 7r is a row eigenvector of P.

Solving w7 P = «” by itself will just specify 7 up to a scalar multiple.
We need to include Condition 2 to scale 7t to a genuine probability distribution,
and then check with Condition 3 that the scaled distribution is valid.

Example: Find an equilibrium distribution for the Markov chain below.

0.5
0.0 0.9 0.1 0.0 0-10 P Qo.z
3

0.8 0.1 0.0 0.1 2
0.0 0.5 0.3 0.2
0.1 0.0 0.0 0.9

Solution:

Letn? = (my, my, 73, m4).
The equations are” P =« andr, + m + m3 + 74 = 1.
0.0 0.9 0.1 0.0

Tp o ( ) 0.8 0.1 0.0 0.1 ( )

v =TT T Tro T TI. — \7T1 TTo T3 T

PR 00 05 03 0.2 b

0.1 0.0 0.0 0.9



8mo 4 .1my
9m + 1wy + .53
Am + .3ms
Amy + 2m3 + .91y

Also T+ Mo + T3 + Ty

(3) = m
Substitute in (2) = .9(Tw3) + .53

= T

: . 68
Substitute in (1) = .8 <§7r3) +.1my

= Ty

Substitute all in (5) = 3 <7 + %—8 +14 89—6)

= T3

Overall:

T 63 68 9 86
v =
2267 2267 2267 226

= (0.28, 0.30, 0.04, 0.38).
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1
T2

(1)
(2)
T (3)
(4)
(5)

226

This is the distribution the chain converged to in Section 9.1.



9.4 Long-term behaviour o 05

In Section 9.1, we saw an example where the Markov
chain wandered of its own accord into its equilibrium
distribution:

]P)(Xg)oo = ZC) P(Xg,m = CC) P(X502 = LU) ]P)(X503 = x)
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This will always happen for this Markov chain. In fact, the distribution it
converges to (found above) does not depend upon the starting conditions: for
ANY value of X,,, we will always haveX; ~ (0.28, 0.30, 0.04, 0.38) ast — cc.

What is happening here is that each row of the transition matrik' converges
to the equilibrium distribution0.28, 0.30, 0.04, 0.38) ast — oo:

0.0 0.9 0.1 0.0 0.28 0.30 0.04 0.38

p_ 0.8 0.1 0.0 0.1 . pt 0.28 0.30 0.04 0.38 as £ — 00
0.0 0.5 0.3 0.2 0.28 0.30 0.04 0.38 '
0.1 0.0 0.0 0.9 0.28 0.30 0.04 0.38

(If you have a calculator that can handle matrices, try finding P! for ¢ = 20
and ¢t = 30: you will find the matrix is already converging as above.)

This convergence of P’ means that for larget, no matter WHICH state we start
in, we always have probability

e about 0.28 of being in State 1 after ¢ steps;

e about 0.30 of being in State 2 after ¢ steps;

e about 0.04 of being in State 3 after ¢ steps;

e about 0.38 of being in State 4 after ¢ steps.
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Start at Xy = 2 Start at Xy =4

0.8
e
0.8

0.6
0.6

P(X, = k| Xo)
P(X, = k| Xo)

State 4 State 4
I State 2 State 2
II ’ State 1 fﬁw State 1
M'w
S State 3 o] & State 3
6 26 4‘0 66 86 160 0 20 4‘0 66 86 160
time, t time, ¢

The left graph shows the probability of getting from state 2 to state k in t
steps, as t changes: (P')yy, for k =1,2,3, 4.

The right graph shows the probability of getting from state 4 to state k in t
steps, as t changes: (P')yy, for k =1,2,3, 4.

The 2nitial behaviour differs greatly for the different start states.
The long-term behaviour (large t) is the same for both start states.

However, this does not always happen. Consider the two-state chain below:
N 01
P =
@f@ ( 10 )

As t gets large, P! does not converge:

10 01 10 01
500 _ 501 _ 502 _ 503 _
= (oh) rme(ia) e=(on) 7= (V0) -

For this Markov chain, we never ‘forget’ the initial start state.
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General formula for P!

We have seen that we are interested in whether P! converges to a fixed matrix
with all rows equal as — .

If it does, then the Markov chain will reach an equilibrium distribution that does
not depend upon the starting conditions.

The equilibrium distribution is then given by any row of the converge#t'.

It can be shown that a general formula is available for P! for any ¢, based on
the eigenvalues of P. Producing this formula is beyond the scope of this course,
but if you are given the formula, you should be able to recognise whether P! is
going to converge to a fixed matrix with all rows the same.

Example 1:
0.8
0.2 0.8
é—% 0.2 C@ - (@D 0.4 PZ( 0.6 0.4 )

We can show that the general solution for P! is:

1 3 4 4 -4
t_ = . t
Peatla a) (s ) o)
Ast — oo, (—0.4)" — 0, so
1/ 3 4
t — =
P %7<3 4) (

This Markov chain will therefore converge to the equilibniwlistributionm” =
(2,1) ast — oo, regardless of whether the flea starts in state 1 or state 2.

=l ~Jlw
T I

Ezercise: Verify that w7 = (%, %) is the same as the result you obtain from solving
the equilibrium equations: 77 P = ! and m + m = 1.
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Example 2: Purposeflea knows exactly what he is doing, so his probabilities are
all 1:

A O — P (90)

We can show that the general solution for P? is:

Pl ) (e ) e

Ast — oo, (—1)" does not converge to 0, so

Pt:<(1) ?) if t is even

;[0 1 L
P_< | O) if t is odd
for all t.

In this exampleP! never converges to a matrix with both rows identical gets
large. The chain never ‘forgets’ its starting condition$ as oc.

Exercise: Verity that this Markov chain does have an equilibrium distribution,

nl = (l l). However, the chain does not converge to this distribution as

272
t — o0.

These examples show that some Markov chains forget their starting conditions
in the long term, and ensure that X; will have the same distribution as t — oo
regardless of where we started at X,. However, for other Markov chains, the
initial conditions are never forgotten. In the next sections we look for general
criteria that will ensure the chain converges.
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Target Result:

e If a Markov chain is #rreducible and aperiodic, and if an equilibrium
distribution w7 exists, then the chain converges to this distribution as

t — oo, regardless of the initial starting states.

To make sense of this, we need to revise the concept of irreductbility, and
introduce the idea of aperiodicity.

9.5 Irreducibility

Recall from Chapter 8:

Definition: A Markov chain or transition matrix P is said to be irreducible if
i «» j foralli,j € S. Thatis, the chain is irreducible if the state sp&ce a
single communicating class.

An irreducible Markov chain consists of a single class.

m
/@\ DS
B %) (5 ~—=(4)
Irreducible Not irreducible

Irreducibility of a Markov chain is important for convergence to equilibrium as
t — oo, because we want the convergence to be independent of start state.

This can happen if the chain is irreducible. When the chain is not irreducible,
different start states might cause the chain to get stuck in different closed
classes. In the example above, a start state of Xy = 1 means that the chain is
restricted to states 1 and 2 as t — oo, whereas a start state of Xy = 4 means
that the chain is restricted to states 4 and 5 as t — oo. A single convergence
that ‘forgets’ the initial state is therefore not possible.
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9.6 Periodicity

Consider the Markov chain with transition matrix P = < ? (1) ) )

1
= ’ !H @) @ Suppose that X, = 1.
1

Then X; = 1 for all even values of, andX; = 2 for all odd values of.

This sort of behaviour is called periodicity: the Markov chain can only return
to a state at particular valuestof

Clearly, periodicity of the chain will interfere with convergence to an equilibrium
distribution as ¢ — oo. For example,

1 for even values of t,

PX;=1|Xo=1)=
0 for odd values of ¢.

Therefore, the probability can not converge to any single value as t — oo.

Period of state 2

To formalize the notion of periodicity, we define the period of a state 1.
Intuitively, the period is defined so that the time taken to get from sta&ek to
State; again is always a multiple of the period.

In the example above, the chain can return to state 1 after 2 steps, 4 steps, 6
steps, 8 steps, . ..

The period of state 1 is therefore 2.

In general, the chain can return from state ¢ back to state ¢ again in t steps if
(P"),; > 0. This prompts the following definition.
Definition: The period d(i) of a state ¢ is
d(i) = ged{t : (P"). > 0},

the greatest common divisor of the times at which return ssyie.



THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 1 8 5

Definition: The state 7 is said to be periodic if d(i) > 1.

For a periodic state 7, (P'),, = 0 if ¢ is not a multiple of d(i).

Definition: The state ¢ is said to be aperiodic if d(i) = 1.

If state 7 is aperiodic, it means that return to stateis not limited only to regularly
repeating times.

For convergence to equilibrium as ¢t — oo, we will be interested only in aperiodic
states.

The following examples show how to calculate the period for both aperiodic
and periodic states.

Examples: Find the periods of the given states in the following Markov chains,
and state whether or not the chain is irreducible.

1. The simple random walk.
p p p p p
l=p 1-=p 1-=p 1-p 1-p

d(0) = ged{2,4,6,...} = 2.

Chain is irreducible.
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d(1) = ged{2,3,4,...} = 1.

Chain is irreducible.

R —
%—

T l T l d(1) = ged{2,4,6,...} = 2.

@_> @ Chain is irreducible.

d(1) = ged{2,4,6,...} = 2.
Chain is NOT irreducible (i.e. Reducible).

offojos

d(1) = ged{2,4,5,6,...} = 1.

Chain is irreducible.

Q& Ge

186
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9.7 Convergence to Equilibrium

We now draw together the threads of the previous sections with the following
results.

Fact: If i <» j, then ¢ and j have the same period. (Proof omitted.)

This leads immediately to the following result:

If a Markov chain is #rreducible and has one aperiodic state,
then all states are aperiodic.

We can therefore talk about an irreducible, aperiodic chain, meaning that
all states are aperiodic.

Theorem 9.7: Let {Xy, X,...} be an irreducible and aperiodic Markov chain
with transition matrix P. Suppose that there exists an equilibrium distribution

7. Then, from any starting state i, and for any end state j,
P(X;=j|Xo=1) =7 ast— oc.

In particular,
(P’f)ij — m; ast — oo, foralli andj,

So P! converges to a matrix with all rows identical and equatto O]

For an irreducible, aperiodic Markov chain,

with finite or infinite state space,
the existencef an equilibrium distributior” ensures

that the Markov chain will convergie n' ast — oo.
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Note: If the state space is infinite, it is not guaranteed that an equilibrium distri-
bution 77 exists. See Example 3 below.

Note: If the chain converges to an equilibrium distribution 7”7 as t — oo, then the
long-run proportion of time spent in statas .

9.8 Examples

A typical exam question gives you a Markov chain on a finite state space and
asks if it converges to an equilibrium distribution as ¢ — co. An equilibrium
distribution will always exist for a finite state space. You need to check whether
the chain is irreducible and aperiodic. If so, it will converge to equilibrium.
If the chain is irreducible but periodic, it cannot converge to an equilibrium
distribution that is independent of start state. If the chain is reducible, it may
or may not converge.

The first two examples are the same as the ones given in Section 9.4.

Example 1: State whether the Markov chain below converges to an equilibrium
distribution as t — oo.

0.8
0.2 0.8
=05 o1)

—

The chain is irreducible and aperiodic, and an equilibriustridpution will exist
for a finite state space. So the chain does converge.

(From Section 9.4, the chain convergesrto= (2,2) ast — ~.)
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Example 2: State whether the Markov chain below converges to an equilibrium
distribution as t — oo.

A O — P (90)

The chain is irreducible, but it is NOT aperiodic: perie@.

Thus the chain does NOT converge to an equilibrium distiGuast — oo.

It is important to check for aperiodicity, because the existence of an equilibrium
distribution does NOT ensure convergence to this distribution if the matrix is
not aperiodic.

Example 3: Random walk with retaining barrier at 0.

p p P D

JCONONONONO
\_/

¢ 7 d a  q

Find whether the chain converges to equilibrium as ¢ — oo, and if so, find the
equilibrium distribution.

The chain is irreducible and aperiodic, saaif equilibrium distribution exists,
then the chain will converge to this distributiontas> ~c.

However, the chain has an infinite state space, so we canaoarmgfee that an
equilibrium distribution exists.

Try to solve the equilibrium equations:
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' P =zl andy 2 m = 1.

qmy +qm = ™o (%)

00
Z ](; » 0 pmo +qm2 = T
P = 0¢g 0 p P71 +qT3 = T2

prp_1+qmp, = m for k=12 ...

From (), we haverry = g,

SO m = ]—)7'('0
q

1 1 /p D
=my = —(m —pmy) = — (—7T() —pﬂo) ==
q qa \q q

k
We suspect that, = <§> mo. Prove by induction.

k
The hypothesis is true far= 0, 1,2. Suppose that; = <‘§) 7. Then

1
Thel = 5(7%—197%1)

k
The inductive hypothesis holds, sp= (g) mo for all k > 0.
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00 00 k
We now need Zmzl, ie. 7T02<]—9) = 1.
q
k=0

1=0

The sum is a Geometric series, and converges on&do& 1. Thus whem < q,
q

1
7'('()(1 p)l = 70:1—]—9.

If p > q, there is no equilibrium distribution.

we have

Solution:

If p < q, the chain converges to an equilibrium distributlen wherer, =

(1—5) (g)k fork=0,1,...

If p > q, the chain does not converge to an equilibrium distribuéish— oc.

FExample j: Sketch of Exam Question 2006.

Consider a Markov chain with transition diagram: (O
: L. 4
(a) Identify all communicating classes.
For each class, state whether or not T
it is closed.
2 |« 1 > 3
Classes are: C :)

{1}, {2}, {3} (each not closed); U
{4} (closed).

(b) State whether the Markov chain is
irreducible, and whether or not all states are
aperiodic.

Not irreducible: there are 4 classes.
All states are aperiodic.

(c) The equilibrium distribution is w7 = (0,0,0,1). Does the Markov chain
converge to this distribution as ¢ — oo, regardless of its start state?

Yes, it clearly will converge ta’ = (0,0, 0, 1), despite failure of irreducibility.
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Note: Equilibrium results also exist for chains that are not aperiodic. Also, states

9.9

can be classified as transient (return to the state is not certain), null recurrent

(return to the state is certain, but the expected return time is infinite), and
positive recurrent (return to the state is certain, and the expected return
time is finite). For each type of state, the long-term behaviour is known:

e If the state k is transient or null-recurrent,

P(X; =k|Xo=k) = (P'),, = 0ast— oco.

e If the state is positive recurrent, then

P(X;=Fk|Xo=k) = (Pt)kk — 7 as t — oo, where 7, > 0.

The expected return time for the state is 1 /7.

A detailed treatment is available at
http://www.statslab.cam.ac.uk/” james/Markov/.

Special Process: the Two-Armed Bandit

A well-known problem in probability is called the two-armed
bandit problem. The name is a reference to a type of gambling
machine called the two-armed bandit. The two arms of the
two-armed bandit offer different rewards, and the gambler

has to decide which arm to play without knowing which

is the better arm.

A similar problem arises when doctors are experimenting with
two different treatments, without knowing which one is better. — One-armed bandit
Call the treatments A and B. One of them is likely to be better, but we don’t
know which one. A series of patients will each be given one of the treatments.
We aim to find a strategy that ensures that as many as possible of the patients
are given the better treatment — though we don’t know which one this is.

Suppose that, for any patient, treatment A has P(success) = «, and treatment
B has P(success) = (3, and all patients are independent. Assume that 0 < o < 1
and 0 < 0 < 1.
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First let’s look at a simple strategy the doctors might use:

e The random strategy for allocating patients to treatments A and B is
to choose from the two treatments at random, each with probability 0.5,
for each patient.

e Let pr be the overall probability of success for each patient with the
random strategy. Show that pg = L (o + f3).

The two-armed bandit strategy is more clever. For the first patient, we
choose treatment A or B at random (probability 0.5 each). If patient n is given
treatment A and it is successful, then we use treatment A again for patient n—+1,
forallm =1,2,3,.... If A is a failure for patient n, we switch to treatment B
for patient n + 1. A similar rule is applied if patient n is given treatment B: if
it is successful, we keep B for patient n+ 1; if it fails, we switch to A for patient
n—+ 1.

Define the two-armed bandit process to be a Markov chain with state space
{(A,S), (A, F),(B,S), (B, F)}, where (A,S) means that patient n is given
treatment A and it is successful, and so on.

Transition diagram:

Exercise: Draw on the missing arrows and find their probabilities in terms of
a and f.

(A,S) (B,F)

(A,F) (B,S)

Transition matrix:
AS AF BS BF

AS
AF
BS
BF
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Probability of success under the two-armed bandit strategy

Define pr to be the long-run probability of success using the two-armed bandit
strategy.

Exercise: Find the equilibrium distribution 7r for the two-armed bandit pro-
cess. Hence show that the long-run probability of success for each patient under
this strategy is:

_a+f—2ap
pr = 2—a—g

Which strategy is better?

Exercise: Prove that pr — pr > 0 always, regardless of the values of o and f.

This proves that the two-armed bandit strategy is always better than, or equal
to, the random strategy. It shows that we have been able to construct a strategy
that gives all patients an increased chance of success, even though we don’t know
which treatment is better!

P(success) for different 3 when a=0.7

o |
—
o]
|
@ © |
o ©
3]
3 < |
y o
o |
o .
—— Two—armed Bandit strategy
o | - - - Random strategy
© T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
B

The graph shows the probability of success under the two different strategies,
for o« = 0.7 and for 0 < 8 < 1. Notice how pp > pp for all possible values of .




