Assignment 1

1. Consider the set of all possible observation vectors

$$\mathbf{x} = (x_1, \dots, x_n)$$

with inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i.$$

Define

$$1 = (1, \ldots, 1)$$

and let \mathcal{M} be the set of vectors of the form $\alpha \mathbf{1}$, and \mathcal{V} be the set of vectors orthogonal to \mathcal{M} .

- (a) Compute the projection $P_{\mathcal{M}}\mathbf{x}$ of \mathbf{x} onto \mathcal{M} and the projection $P_{\mathcal{V}}\mathbf{x}$ of \mathbf{x} onto \mathcal{V} .
- (b) In statistical terms, what is the value of

 $||P_{\mathcal{V}}\mathbf{x}||^2/||\mathbf{1}||^2.$

- (c) For two vectors \mathbf{x} and \mathbf{y} , compute the cosine of the angle between $P_{\mathcal{V}}\mathbf{x}$ and $P_{\mathcal{V}}\mathbf{y}$. What is the statistical interpretation of this value?
- 2. Plot the autocorrelation functions for the following ARMA models.
 - (a) AR(2) with $\phi_1 = 1.2$ and $\phi_2 = -0.7$.
 - (b) AR(2) with $\phi_1 = -1$ and $\phi_2 = -0.6$.
 - (c) MA(2) with $\theta_1 = 1.2$ and $\theta_2 = -0.7$.
 - (d) MA(2) with $\theta_1 = -1$ and $\theta_2 = -0.6$.
 - (e) ARMA(1,1) with $\phi = 0.7$ and $\theta = 0.4$.
 - (f) ARMA(1,1) with $\phi = 0.7$ and $\theta = -0.4$.
- 3. Define $Y_t = a \cos(\lambda t + \phi)$ with $\phi \sim U[0, 2\pi]$. Show that Y_t is (weakly) stationary and compute its autocovariance function. (Hint: Those good-old formulas for the sin and cos of the sum and difference of angles might be useful.) Is Y_t strictly stationary? (You need to justify your answer.)