
2003 Exam

Example Solutions

1. (a) The ACF is defined to be

ρ(u) = cor[Yt+u, Yt]

= cov[Yt+u, Yt]/var[Yt]

= γ(u)/γ(0)

where γ is the autocovariance function of Yt. This is well defined
because the correlation is independent of t.

(b) Proceed by cases:

γ(0) = var[εt + θ1εt−1 + θ2εt−2]

= (1 + θ2
1 + θ2

2)σ
2

γ(1) = cov[εt + θ1εt−1 + θ2εt−2, εt−1 + θ1εt−2 + θ2εt−3]

= (θ1 + θ1θ2)σ2

γ(2) = cov[εt + θ1εt−1 + θ2εt−2, εt−2 + θ1εt−3 + θ2εt−4]

= θ2σ
2

and γ(u) = 0 for u > 2.
Thus the autocorrelation function is:

ρ(u) =



1 u = 0,

θ1 + θ1θ2

1 + θ2
1 + θ2

2

|u| = 1,

θ2

1 + θ2
1 + θ2

2

|u| = 2,

0 otherwise.

(c) Start with the equation

Yt+u = φYt+u−1 + εt+u−1.
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Now multiply through by Yt,

Yt+uYt = φYt+u−1Yt + εt+u−1Yt

and take expectations to obtain:

γ(u) = φγ(u− 1).

This recursion also applies to the autocorrelation function

ρ(u) = φρ(u)

and we know that ρ(0) = 1. Putting all this together we obtain:

ρ(u) = φ|u|

for u = 0,±1,±2, . . ..
(d) Again, this uses the standard trick.

(i) Start with

Yt+k = 0.8Yt+k−1 + εt+k + 0.7εt+k−1 + 0.6εt+k−2,

multiply through by Yt and take expectations to obtain

γ(k) = 0.8γ(k − 1) for k ≥ 3,

and hence
ρ(k) = 0.8ρ(k − 1) for k ≥ 3.

(ii) Start with

Yt+2 = 0.8Yt+1 + εt+2 + 0.7εt+1 + 0.6εt,

multiply through by Yt and take expectations to obtain

γ(2) = 0.8γ(1) + 0.6σ2
ε ,

and hence
ρ(2) = 0.8ρ(1) + 0.6σ2

ε/γ(0).

(e) Yt can be approximated by the series defined by

Yt = φYt−1 + εt,

where φ is just slightly less than 1. The estimated ACFs for the two
series should be very similar, so the estimated ACF for the original
series should show very slow exponential decay.

2. (a) A series Yt is (strictly) stationary if for any k > 0 and u > 0, the
distribution of

(Yt1 , . . . , Ytk
)

is the same as the distribution of

(Yt1+u, . . . , Ytk+u).

A time series is mixing if values which are far apart in time are near-
independent. One particular mixing condition is:

∞∑
u=−∞

|cXX(u)| < ∞
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(b) The power spectrum is defnied by:

fXX(λ) =
1
2π

∞∑
u=−∞

cXX(u)eiλU ,

and describes how much variability is present in the series at fre-
quency λ. (This is meaningful because of the Cramér representation.)

(c) The autocovariance function of white noise is:

cXX(u) =

σ2
ε u = 0,

0 otherwise.

Substituting this into the definition of the power spectrum, we obtain

fXX(λ) =
1
2π

=
∞∑

u=−∞
cXX(u)eiλU =

σ2
εe−iλ0

2π
=

σ2
ε

2π

(d) A is linear and time invariant if

A[αX + βY ](t) = αA[X](t) + βA[Y ](t)

and
A[LuX](t) = LuA[X](t)

where L is the lag operator defined by LX(t) = X(t− 1).

(e) The transfer function is

A(λ) =
∞∑

u=−∞
a(u)e−iλu

(f) The transfre function is

A(λ) = 1e−iλ0 − 1e−iλs = 1− e−iλs.

(g) Applying the seasonal summation filter we obtain

St = Yt + Yt−1 + · · ·+ Yt−s+1.

Differencing this we obtain

St − St−1 = Yt − Yt−s.

(h) Let

Asd(λ) = the transfer function for seasonal differencing,

Ass(λ) = the transfer function for seasonal summation,

Ad(λ) = the transfer function for simpl differencing.

By the previous question

Asd(λ) = Ad(λ)Ass(λ),
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and hence
Ass(λ) = Asd(λ)/Ad(λ).

Hence

Ass(λ) =
1− e−iλs

1− e−iλ
.

3. (a) After simple differencing the series still contains a strong seasonal
pattern. After seasonal differencing, the series still contains a (linear)
trend. This indicates that both seasonal and simple differencing are
required to achieve stationarity.

(b) The first statement estimates the autocorrelation function out to lag
24 months for the series obtained by differencing at lag 12 followed
by differencing at lag 1. The second statement estimates the partial
autocorrelation function out to lag 24 months for the series obtained
by differencing at lag 12 followed by differencing at lag 1.

(c) The pacf plot seems to show more evidence of long-term structure
while the acf plot shows evidence of sharp cutoff. This suggests that
an MA structure of some sort is probably appropriate. The acf plot
shows one large correlation at lag 12 and one large correlation at lag
1. On the basis of this I would suggest fitting an ARIMA(0, 1, 1) ×
(0, 1, 1)12 model.

(d) The model is:

(1− L)(1− L12)Yt = (1 + θ1L)(1 + Θ1L
12)εt.

(e) Both parameters are significan so there is no redundancy, and the
residual plots do not show significant correlation. On the basis of
this we can say that there is no evidence to believe that the model is
incorrect. (There does appear to be evidence of serial correlation in
the raw residual plot, but it does not reach significance.

4. (a) Spectral estimates are obtained by averaging adjcent periodogram
values. The bandwidth is the length of the frequency interval over
which averaging takes place. The degrees of freedom is twice the num-
ber of values averaged. The distribution of the estimate is asymptot-
ically a χ2 random variable with this many degrees of freedom.

(b) The power spectrum was obtained by averaging 5 adjacent peri-
odogram values.

(c) The model suggests that there is a periodic (seasonal) pattern to
rainfall in Auckland. This variation must be very close to a pure
cosinusoid because the spectrm shows a single high peak. A close
look at the estimated spectrum shows there may be a small first
harmonic, but it is very small.

(d) Let Y (t) indicate rainfall and X(t) indicate temperature. The model
is:

Y (t) =
∞∑

u=−∞
a(u)X(t− u) + ε(t)
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(e) The relationship shows high coherence at the yearly and only rela-
tively low coherence elsewhere. Outside of the yearly “peak” only
about 5% of the coherence values are significance. This is what you
would expect for unrelated phenomena.

(f) The relative phase of the yearly cycles is close to −π (or 90◦). This
indicates that temperatures are high when rainfall is low and con-
versely. Note that there is a small deviation this though.
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