
Statistics 726 Assignment 2 Solutions

1. To decide what kind of model is appropriate we need to look at the acf
and pacf functions. The acf is given, but we have to work the pacf out
“by hand.” This means applying the Durbin-Levinson algorithm to the
acf.

I tend to be lazy and make mistakes in arithmetic so I decided that it
would be easier to write a little R function to do the work. Here it is:

durbin.levinson =

function(rho)

{

n = length(rho)

pacf = phi = numeric(n)

pacf[1] = phi[1] = rho[1]

for(k in 2:n) {

km1 = k - 1

numer = rho[k] - sum(phi[1:km1]*rho[km1:1])

denom = 1 - sum(phi[1:km1]*rho[1:km1])

phi[k] = numer / denom

phi[1:km1] = phi[1:km1] - phi[k] * phi[km1:1]

pacf[k] = phi[k]

}

pacf

}

We can apply this function to the pacf as follows.

> rho = c(0.41, 0.32, 0.26, 0.21, 0.16)

> durbin.levinson(rho)

[1] 0.41000000 0.18259406 0.09686181 0.04984485

[5] 0.01370679

The standard error for these values is 1/
√

169 so that 95% confidence
limits are ±1.96/

√
169 = ±0.1507692.

All the acf values exceed this and appear be decaying exponentially. We
can conclude that there is a significant autoregressive component to the
model.
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The pacf values are more problematic. Only the first two values exceed
the confidence limits (sharp cutoff). Together with the acf behaviour
this could indicate and AR(2) model. Alternatively, the pacf could be
interpreted as exhibiting exponential decay (roughly halving for each
extra lag). This could be indicative of an ARMA(1,1) series. I’ll accept
either argument provided the reasoning is given.

There is an additional check for ARMA(1,1) models, namely that

ρ(2)2 = ρ(1)ρ(3).

In this case r(2)2 = 0.1024 and r(1)r(3) = 0.1066, which are very close.
This means that ARMA(1,1) is probably a suitable model.

2. For the AR(1) model, the acf is given by ρ(u) = φ|u|, and from the notes
the variance for r(u) is

var r(u) ≈ 1

T

(
(1 + φ2)(1− φ2u)

1− φ2
− 2uφ2u

)
.

To answer the question, I implemented a couple of small R functions as
follows

rho = function(u, phi = .7) phi^u

sdr = function(u, phi = .7, nobs = 100) {

sqrt(((1+phi^2)*(1-phi^(2*u))/(1-phi^2)

-2*u*phi^(2*u))/nobs)

}

and used them to measure the size of differences relative to the standard
errors.

> (.6 - rho(1))/sdr(1)

[1] -1.40028

> (-.15 - rho(10))/sdr(10)

[1] -1.046114

It looks like neither value is particularly surprising.
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3. Here is the code I used to answer this question.

a1 = numeric(1000)

a2 = numeric(1000)

for(i in 1:1000) {

x = arima.sim(model = list(ar = .5), n = 100)

a = acf(x, lag = 2, plot = FALSE)

a1[i] = a$acf[2]

a2[i] = a$acf[3]

}

sd(a1) # var(r(1))

sd(a2) # var(r(2))

cor(a1, a2) # var(r(1),r(2))

These produce values which are very close to those which come from the
asymptotic results given in table 4.1.

Quantity Simulation Asymptotic Theory

var(r(1)) 0.0862 0.087 = 0.87/
√

100

var(r(2)) 0.116 0.115 = 1.15/
√

100
cor(r(1), r(2)) 0.738 0.76
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