
WeBIPP Poster Supplement

Jimmy Oh

Department of Statistics
University of Auckland

joh024@aucklanduni.ac.nz

1 More on WeBIPP

WeBIPP is a web-based interactive tool for building statistical graphics from scratch without
having to write code. Conceptually, this is similar to the idea proposed by Bret Victor in
early 20131, with Lyra2 sharing many similarities to this idea.

WeBIPP, however, was developed independently and thus has a crucial difference in fun-
damental philosophy - WeBIPP does not shy away from code. Rather than focusing solely on
the GUI-side of things, WeBIPP is a bridging solution, trying to take the best of both using
GUIs, and writing code. WeBIPP is not only a tool for interactively producing graphics, it
is a tool for interactively writing code. This has many advantages, including:

• All actions recorded and fully reproducible

• Ability to tweak code as needed to go beyond the interface

• Being able to generalise your actions and sharing this generalisation as an addon

Being able to generalise your actions is termed Functionising Actions, and works by
turning your actions (which was writing WeBIPP code in the background) into a function.
This is a powerful tool not only for sharing complete graphics, but also in re-using parts of
your graphic, both in the same graphic, or elsewhere.

Figure 1: When creating a population pyramid, one only needs to create one side of the
pyramid from scratch. The other side can be created by functionising the first half.

Also mentioned briefly in the poster is that almost everything in WeBIPP is an addon,
allowing all manner of things, including the layout, the interfaces used for assigning attributes,
and much more, to be altered through addons. The advantage of this is obvious, especially
to users of R who benefit from the many packages R has. It enables great extension and
customisation of WeBIPP to suit almost every need.

To facilitate this WeBIPP is extremely generalised. While this also has its advantages
(mainly in being able to easily include new addons), it also means that WeBIPP’s core system
doesn’t understand what it’s doing. The implications of this are many, and range from a user
interface that is perhaps, not as easy-to-use as a more restrictive software, to code that is
less optimised as it must handle a very general case.

For more on WeBIPP, including a live version of WeBIPP that you can play with, and
tutorials to replicate the examples from the poster, visit:
https://www.stat.auckland.ac.nz/~joh024/Research/WeBIPP/

1http://vimeo.com/66085662
2http://idl.cs.washington.edu/projects/lyra/

1

https://www.stat.auckland.ac.nz/~joh024/Research/WeBIPP/
http://vimeo.com/66085662
http://idl.cs.washington.edu/projects/lyra/

2 Using R with WeBIPP

Compared to the vast data manipulation capabilities of R, JavaScript is sorely lacking. While
basic manipulation facilities will be added to WeBIPP in time, for now it only accepts JSON
data in a data.frame-like format. Thus it is recommended for data to be sourced first into
R (which can of course read from a variety of data formats) then exported to JSON.

2.1 Exporting to JSON directly

First step is to get a package that will allow exports to JSON. I use rjson for this purpose.
Second step is to get the data you want into a data.frame. The rjson package can accept

a few different formats, but a data.frame is recommended for use with WeBIPP as it will
ensure each of your variables will be of the same length.

Third step is to export the JSON to a file, which can then be loaded by WeBIPP. Examples
follow:

library(rjson)

Exporting cars data from R

cars is already in a data.frame, so it’s very simple

writeLines(toJSON(cars), "cars.json")

Exporting Nile data from R

Nile is a Time Series, and so cannot be exported directly

We must first convert it to a data.frame

Nile.df = data.frame(Time = time(Nile), Nile)

writeLines(toJSON(Nile.df), "Nile.json")

Exporting mother.tongue data

Data available from the WeBIPP homepage

mother.tongue is a named vector, so must be converted

mother.tongue.df = data.frame(lang = names(mother.tongue),

speakers = mother.tongue)

writeLines(toJSON(mother.tongue.df), "mothertongue.json")

2.2 Using integrated R terminal

It is also possible to make use of an integrated R terminal to connect R to WeBIPP, rather
than exporting to a JSON file which is then read in by WeBIPP.

The current implementation makes use of the shiny package. Download the ‘shiny App’
(a folder containing some .R files used by the shiny package) wbipR from the WeBIPP
homepage, then source wbipR.R to R.

library(shiny)

library(rjson)

Ensure the working directory is the directory

that contains the wbipR folder

source("wbipR.R")

runApp("wbipR")

This will open your default browser (refer to shiny documentation on how to change
this, if required) and display WeBIPP, along with a terminal that grants full access to your
R session. All inputs into this terminal are evaluated in the Global Environment of your R
session with full permission.

The command sendTOwbip is a special command to send the given data to WeBIPP. For
example sendTOwbip(datacars = cars) being run from the terminal will result in a new
dataset called datacars being added to WeBIPP, which will contain the cars data.

Various ways to make this connection between R and WeBIPP more productive and
intuitive are being worked on, and any suggestions are welcome.

2

	More on WeBIPP
	Using R with WeBIPP
	Exporting to JSON directly
	Using integrated R terminal

