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Linear Models and Geometry

There is a rich geometry associated with the statistical linear
model. Understanding this geometry can provide insight in
much of the analysis associated with regression analysis.

I The idea is to write the regression model as a vector
equation and explore the implications of this equation
using a basic understanding of vector spaces.

I Need to review aspects of vectors and vector spaces.
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The Basics of Vectors

For our purposes, a vector is a “n-tuple” of real numbers
which we denote

v =


v1

v2
...
vn


boldface will be
used to indicate

vectors (and matrices)

I We will think of a vector as the coordinates of a point in
n-dimensional space – often we will use a directed line
segment that extends from the origin to these coordinates
to help us visualise concepts.
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Example: 2-component Vectors

Two-component vectors can be displayed as directed line
segments on a standard scatterplot.

v =

[
2
3

]
w =

[
−4

1

]
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Vector Addition

The sum of two vectors is obtained by adding their
corresponding entries:

v1

v2
...
vn

+


w1

w2
...

wn

 =


v1 + w1

v2 + w2
...

vn + wn



For example: v + w =

[
2
3

]
+

[
−4

1

]
=

[
−2

4

]
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Visualising Vector Addition

Visually, we translate the starting point of one the vectors to
the endpoint point of the other.
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The sum is the vector from the origin to the new endpoint.
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Scalar Multiplication of Vectors

To multiply a vector by a constant, simply multiply each entry
by that constant:

k ×


v1

v2
...
vn

 =


k × v1

k × v2
...

k × vn


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Visualising Scalar Multiplication
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If we multiply a vector by a constant, the resulting vector has
the same direction (or the opposite direction if the constant is
negative) as the original vector but its length has been
multiplied by the constant.
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Some Basic Vector Algebra

For vectors u, v and w and scalars k1 and k2:

1. v + w = w + v
2. u + (v + w) = (u + v) + w
3. k1(v + w) = k1v + k1w
4. (k1 + k2)v = k1v + k2v

I Pretty much any algebraic property that applies to the
addition and multiplication of real numbers will apply to
vectors as well.
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The Linear (Regression) Model

The linear model can be written as an equation which relates
the value of a response variable Y to the values of one or
more explanatory variables:

Y = β0 + β1X1 + . . . + βkXk + ε

I All of the β’s are fixed constants but are unknown
I ε is a random variable that is assumed to have a N(0, σ2)

distribution.
I As a result Y is a random variable with mean
µ = β0 + β1X1 + . . . βkXk and variance σ2.
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The Data

Suppose we have n observed values for the response y1 through
yn. For observation i , denote the values of the explanatory
variables as xi1 through xik and arrange the data in a table:

Obs. Resp. X1 X2 . . . Xk

1 y1 x11 x12 . . . x1k

2 y2 x21 x22 . . . x2k
...

...
...

...
...

n yn xn1 xn2 . . . xnk
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A Set of Equations

For each observation yi , we can write:

yi = β0 + β1xi1 + β2xi2 + . . . + βkxik + εi

Stacking all of these equations gives:

y1 = β0 + β1x11 + β2x12 + . . . + βkx1k + ε1

y2 = β0 + β1x21 + β2x22 + . . . + βkx2k + ε2
...

...
...

...
...

...

yn = β0 + β1xn1 + β2xn2 + . . . + βkxnk + εn
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The Linear Model as a Vector Equation

The previous set of equations can be rewritten as a vector
equation:


y1

y2
...
yn

 = β0


1
1
...
1

+β1


x11

x21
...

xn1

+ . . .+βk


x1k

x2k
...

xnk

+


ε1
ε2
...
εn



Using boldface to represent vectors, this becomes:

y = β01 + β1x1 + . . . βkxk + ε
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Catheter Length Example

For 12 young patients, catheters were fed from a principal vein
into the heart. The catheter length was measured as was the
height and weight of the patients. Is it possible to predict the
necessary catheter length based on height and weight?

Reference: S Weisberg, Applied Linear Regression, Wiley,
1980, page 218.
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Catheter Length Data

Patient Height (in.) Weight (lbs.) Catheter (cm)

1 42.8 40.0 37
2 63.5 93.5 50
3 37.5 35.5 34
4 39.5 30.0 36
5 45.5 52.0 43
6 38.5 17.0 28
7 43.0 38.5 37
8 22.5 8.5 20
9 37.0 33.0 34

10 23.5 9.5 30
11 33.0 21.0 38
12 58.0 79.0 47
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Catheter Regression Model

We can explore using a regression model that relates the
necessary catheter length to the height and weight of the
patient:

Y = β0 + β1X1 + β2X2 + ε

I Y is catheter length.
I X1 is patient height.
I X2 is patient weight.
I ε represents patient-to-patient variability.
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The Vector Equation for the Catheter Data



37
50
34
36
43
28
37
20
34
30
38
47


y

= β0



1
1
1
1
1
1
1
1
1
1
1
1


1

+ β1



42.8
63.5
37.5
39.5
45.5
38.5
43.0
22.5
37.0
23.5
33.0
58.0


x1

+ β2



40.0
93.5
35.5
30.0
52.0
17.0
38.5

8.5
33.0

9.5
21.0
79.0


x2

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10

ε11

ε12


ε
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Fixed Vectors and Random Vectors

The linear model contains two types of vectors:

1. Fixed vectors are vectors of constants – these are vectors
that you would study in a Maths course.

I 1, x1,. . . xk are all fixed vectors.

2. Random vectors are vectors of random variables. Thus a
random vector has a distribution.

I ε is a random vector.
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Some Stuff about Random Vectors

A random vector V that contains random variables V1, . . . Vp

can be thought of as a vector that has a density function or as
a collection of random variables.

I The distribution for V is determined by the joint
distribution of V1, . . . Vp.

I The expected value of V represents its “average location”
and is a fixed vector given by:

E(V) = E

 V1
...

Vp

 =

 E(V1)
...

E(Vp)


I We will use the notation µV to represent E(V).
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More Stuff about Random Vectors

To summarise how V varies about µV, both the variability of
the elements and how they vary relative to each other must be
considered (the variances of individual elements and the
covariances between pairs of elements).

I It is convenient, to put these variances and covariances
into a matrix which we will call ΣV or Cov(V).

ΣV =


var(V1) cov(V1,V2) · · · cov(V1,Vp)

cov(V2,V1) var(V2) · · · cov(V2,Vp)
...

...
...

cov(Vp,V1) cov(Vp,V2) · · · var(Vp)


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The Density of a Random Vector

Conceptually, it is useful to think the density function for a
random vector as a cloud in Rn that indicates the plausible
end points for the random vector: the vector is more likely to
end in a region where the cloud is dense than one where it is
not dense.
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Working with Random Vectors

If we add a fixed vector C to a random vector V, the resulting
vector U = V + C is a random vector with:

µU = µV + C and ΣU = ΣV

I E.g. If µV =

[
2
3

]
and C =

[
−4

1

]

then µU =

[
2
3

]
+

[
−4

1

]
=

[
−2

4

]
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Working with Random Vectors

The mean of the vector has been shifted but how the vector
varies about its mean stays the same.
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The Distribution of the Errors

The linear model assumes that the errors are independent,
N(0, σ2) observations.

I The joint distribution of the εi ’s is multivariate Normal
with E(εi) = 0, var(εi) = σ2 and cov(εi , εj) = 0 for all i
and j 6= i . i

I Thus the joint density function is:

f (ε1, ε2, . . . εn) =
1

(2πσ2)n/2
e−(ε21+ε

2
2+...ε

2
n)/2σ

2
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The Distribution of ε

On slide 11 we defined the random vector ε:

ε =

 ε1
...
εn

 where the εi ’s are independent
N(0, σ2) random variables.

The random vector ε is designated as being N(0, σ2In):

µε =


0
0
...
0

 = 0 Σε =


σ2 0 · · · 0

0 σ2 . . .
...

...
. . .

. . . 0
0 · · · 0 σ2

 = σ2In
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The Density “Cloud” for ε

For ε, the density can be written as:

f (ε) =
1

(2πσ2)
n
2

e−‖ε‖
2/2σ2

where ‖ε‖2 = εtε = ε21 + . . . ε2n

I Since ‖ε‖ is the length of ε, the density function depends
on the length of ε but not on its direction.

I The density decreases as ‖ε‖2 increases.
I Conceptually, this density is a n-dimensional fuzzy ball

centered at the origin.
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The Density “Cloud” for a N(0, σ2I2) Vector

A two dimensional N(0, σ2I2) random vector would have a
density cloud like this:
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Is the Response Vector Fixed or Random?

It depends:

I When we are talking about the properties of the linear
model, then the response vector is a random vector which
we will denote as Y.

I However, when we are talking about a particular data set,
then the response vector contains the observed values of
the response which we will denote by y. Technically, y is
a fixed vector which represents a particular realisation of
the random vector Y.
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The Distribution of Y

The linear model represents Y as the sum of a fixed vector
and a random vector:

Y = β01 + β1x1 + . . . βkxk︸ ︷︷ ︸
fixed vector

+ ε︸︷︷︸
random vector

I Y is a random vector with:

µY = β01 + β1x1 + . . . βkxk + µε

= β01 + β1x1 + . . . βkxk

ΣY = Σε = σ2In
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The Density Cloud of Y

Y has the same density as ε except that it is centered around
µY rather than the origin.
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The Mean

The linear model restricts the possibilities for µY to vectors
that can be formed by taking linear combinations of the
vectors 1, x1, . . . xk:

µY = β01 + β1x1 + . . . βkxk

I In words, the mean vector must be a linear combination
of 1, x1, . . . xk.
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Vector Spaces

For our purposes, we only need to consider vectors which
contain real numbers and the usual definitions of vector
addition and scalar multiplication. In this case, a vector space
is any collection of vectors that is closed under addition and
scalar multiplication.

I This means that if we take two vectors u and v from a
vector space then any linear combination k1u + k2v must
also be in that vector space.

I As a result, the zero vector must be in all vector spaces.
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Definition of Rn

Let Rn be the set of all n-component vectors where each
component is a real number.

I Rn is a vector space under the usual definitions of vector
addition and scalar multiplication.

I The real numbers are closed under addition and
multiplication.
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Subspaces of Rn

We will need to consider the different subspaces of Rn.

I Any subset of the vectors in Rn which is itself a vector
space is called a subspace of Rn.

I Since we use the same definitions for addition and scalar
multiplication as before, all we really need to check is
that the subset of vectors is closed under addition and
scalar multiplication.
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The Basis of a Vector Space

The usual way to define a subspace is by identifying a set of
vectors that form a basis.

I Suppose we take any finite collection of vectors from Rn

and consider the set of vectors produced by taking all
possible linear combinations of these vectors. Our method
of generating this subset guarantees that it will be closed
under addition and scalar multiplication and thus be a
subspace of Rn.

I Further, suppose that none of the vectors in original
collection can be generated as a linear combination of the
other vectors – i.e. none of these is redundant. Then this
collection of vectors is called a basis for the vector space
they generate.
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R3 as an Example

R3 is a useful example since we can think of it as representing
the space around us.

Consider the vector space generated by a single vector v1 in
R3: the subspace consists of v1 and all scalar multiples of v1.

I This subspace can be thought of as a infinite line in R3

2

4

6

8

10

2

4

6

8

10

 
 

 

�
�
�
���

v1

36 / 56



R3 as an Example

Now consider the vector space generated by two vectors, v1

and v2, in R3.

I Provided that v1 6= k × v2 (i.e. they are not co-linear)
then the subspace generated by v1 and v2 is a plane.

2

4

6

8

10

2

4

6

8

10

10

20

30

40

50

 
 

 

�
�
���

J
J
J
J
J]
v1 v2

37 / 56



The Subspaces of R3

The subspaces of R3 can be categorised as follows

1. The origin itself.
2. Any line through the origin.
3. Any plane through the origin.
4. R3 itself.

Items 3 and 4 on this list are technically subspaces of R3 but
are not of much practical interest – they are referred to as the
“improper subspaces.”
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Dimensions of Subspaces

Notice that our categories are based on the dimensions of the
subspaces.

I The origin is considered 0-dimensional.
I Lines are 1-dimensional as they can be defined by a single

vector.
I Planes are 2-dimensional as 2 (non-colinear) vectors are

needed to define a plane.
I R3 is 3-dimensional.
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A Basis of a Subspace

Suppose that for a subspace S we have vectors v1 . . . vk such
that every vector in S can be expressed as a linear
combination of v1 . . . vk . Then v1 . . . vk is said to span S .

Vectors v1 . . . vk are said to be linearly independent if it is
not possible to express any one of them as a linear
combination of the others.

A set of vectors v1 . . . vk is a basis for a subspace S if

(i) v1 . . . vk span S
(ii) v1 . . . vk are linearly independent.
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The Dimension of a Subspace

For any subspace S , there are an infinite number of bases.
However, each of these will consist of exactly the same
number of vectors. The number of vectors in a basis for S is
called the dimension of S .

I E.g. for a line in R3, a basis will consist of of one vector
that falls on that line – lines are 1-dimensional.

I For any plane in R3, any set of 2 linearly independent
(non-colinear) vectors that fall on that plane are a basis –
planes are 2-dimensional.

I Any set of 3 linearly independent vectors in R3 will be a
basis for R3 itself.
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Extending to Rn

The subspaces of Rn can be categorised by their dimension:

I The origin itself.
I Any line through the origin (1-dimensional).
I Any plane through the origin (2-dimensional)
I Any 3-dimensional hyperplane through the origin.

...

I Any (n − 1)-dimensional hyperplane through the origin.
I Rn itself.
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Back to the Regression Model

For the regression model:

Y = µY + ε where µY = β01 + β1x1 + . . . βkxk

The relationship between Y and the explanatory variables is
modeled through the fixed vector µY.

I Since µY is a linear combination of the vectors 1, x1,
. . . xk, it must be an element of the vector space spanned
by 1, x1, . . . xk – we will call this the model space.

I Assuming that 1, x1, . . . xk are linearly independent, the
model space is a subspace of Rn of dimension k + 1.
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Matrix Form of the Regression Model

The regression model as a vector equation:

 Y1
...

Yn

 = β0

 1
...
1

+ β1

 x11
...

xn1

+ . . .+ βk

 x1k
...

xnk

+

 ε1
...
εn


We can write this more compactly by combining the
explanatory variable vectors into a matrix: Y1

...
Yn


︸ ︷︷ ︸

Y

=

 1 x11 · · · x1k
...

...
...

1 xn1 · · · xnk


︸ ︷︷ ︸

X

 β0
...
βk


︸ ︷︷ ︸

β

+

 ε1
...
εn


︸ ︷︷ ︸

ε
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Matrix Form for Catheter Data



37
50
34
36
43
28
37
20
34
30
38
47


︸ ︷︷ ︸

Y

=



1 42.8 40.0
1 63.5 93.5
1 37.5 35.5
1 39.5 30.0
1 45.5 52.0
1 38.5 17.0
1 43.0 38.5
1 22.5 8.5
1 37.0 33.0
1 23.5 9.5
1 33.0 21.0
1 58.0 79.0


︸ ︷︷ ︸

X

 β0

β1

β2


︸ ︷︷ ︸

β

+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10

ε11

ε12


︸ ︷︷ ︸

ε
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Geometric Representation

Thus we have:

Y = µY + ε where µY = Xβ

Notice that we have defined the model space as the subspace
of Rn spanned by the columns of X – another name for this
subspace is the column space of X denoted as colsp(X).

 

 y
ε

µY

colsp(X)
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Model Fitting

We can divide the model fitting procedure into two steps:

Step 1: Find an estimate of µY based on the distribution
of Y – we will call this estimate µ̂Y.
Step 2: Use µ̂Y to estimate the unknown parameters for
the regression model (β0, β1, . . .βk).
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Step 1: Finding µ̂Y

The regression model restricts µY to the subspace of Rn

spanned by the explanatory vectors (we called this the model
space). Since the distribution of Y is centered around µY, it
makes sense to define µ̂Y as the point in the model space that
is closest to Y .

I To find this point, we take the orthogonal projection of Y
onto the model space.
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Orthogonal Projection Matrices

To find the orthogonal projection of the observed response
vector y onto colsp(X), we can pre-multiply y by a projection
matrix H given by:

H = X (XtX)
−1

Xt

I This method of producing a projection matrix works for
any matrix X which has linearly independent columns.
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Orthogonal Projection of Y

Projecting y onto colsp(X) gives our estimated mean vector
for Y (i.e the fitted values):

µ̂Y = X (XtX)
−1

XtY = Hy

 

 

y

Hy

colsp(X)
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Catheter Data Analysis using R

In R , we can create the X matrix and the y vector for the
catheter data as follows:

> x1<-c(42.8,63.5,37.5,39.5,45.5,38.5,
+ 43.0,22.5,37.0,23.5,33.0,58.0)
> x2<-c(40.0,93.5,35.5,30.0,52.0,17.0,
+ 38.5, 8.5,33.0, 9.5,21.0,79.0)
> X<-cbind(1,x1,x2)
> y<-matrix(c(37,50,34,36,43,28,37,20,34,30,38,47),12,1)
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Fitted Values for the Catheter Example

Then we can project y on to the colsp(X) to get µ̂Y as follows:

> H<-X%*%solve(t(X)%*%X)%*%t(X)
> H%*%y

[,1]
[1,] 37.03954
[2,] 51.62559
[3,] 35.06266
[4,] 34.43313
[5,] 39.90170
[6,] 31.73815
[7,] 36.79505
[8,] 26.74188
[9,] 34.47955

[10,] 27.14373
[11,] 31.34342
[12,] 47.69560
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The Residual Vector

The vector of residuals is defined as:

r = y − µ̂Y

= y −Hy

= (I−H)y

 

 

y

Hy

(I−H)y

colsp(X)
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Least Squares

The orthogonal projection of y minimises the distance between
y and µ̂. From the previous picture it is clear that this
distance between is equal to the length of the residual vector r
which we denote as ‖r‖. Recalling some linear algebra:

‖r‖ =
√

rtr =
√

r 2
1 + r 2

2 + . . . r 2
n

I Thus choosing µ̂ to minimise ‖r‖ is the same as
minimising the sum of the squared residuals (least
squares).
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Parameter Estimates

Since the column vectors of X are linearly independent, they
form a basis for colsp(X). Thus there is a unique linear
combination of the columns of X that produce µ̂. Putting the
coefficients for this relation in a vector β̂, we get µ̂Y = Xβ̂.

Combining: µ̂Y = Xβ̂

with: µ̂Y = X (XtX)
−1

XtY

gives: β̂ = (XtX)
−1

XtY
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Parameter Estimates for Catheter Data

To get β̂ for our catheter data:

> solve(t(X)%*%X)%*%t(X)%*%y
[,1]

20.3757645
x1 0.2107473
x2 0.1910949
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