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Today’s agenda

In this lecture we discuss the topic of regularization, a way of
improving the predictive ability of least squares.
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Motivation

For the linear regression model y = Xβ + ε:

E (β̂) = β

but
E (β̂T β̂) = β̂T β̂ + σ2trace(XTX )−1.

The vector of regression coefficients is too long!

Thus, regularisation: A modification to least squares using a
modified criterion that penalizes large coefficients and “shrinks”
them towards zero.
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Ridge Regression

Instead of minimizing the residual sum of squares, minimize the
RSS ||y − Xb||2 subject to the constraint

p∑
j=1

b2
j ≤ s

for a fixed value s. If the least squares estimates β̂j satisfy

p∑
j=1

β̂2
j ≤ s

then this is just least squares, otherwise the fitted coefficients will
have shorter length.
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Equivalent formulation

Equivalent to minimizing ||y −Xb||2 +λ||b||2 for a fixed value of λ.

The minimizer is

β̂Ridge = (XTX + λI )−1XT y .
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Ridge trace
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The Lasso

Similar to ridge but we are minimizing the residual sum of squares
||y − Xb||2 subject to the (different) constraint

p∑
j=1

|bj | ≤ s

for a fixed value s.

If the LS estimates satisfy this constraint then the lasso is
equivalent to LS. Otherwise the lasso coefficient vector has a
shorter length.

Some lasso coefficients can be zero. Thus, the lasso is a
compromise between ridge (which shrinks but does not set
coefficients to 0) and subset selection (which sets some coefficients
to 0 but does not shrink).
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Lasso trace
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Elastic net

Combination of ridge and lasso: minimize

||y − Xb||2 + λ1

∑
j

|bj |+ λ2

∑
j

b2
j
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Standardization

To ensure all variables are shrunk equally, it is usual to standardize
all variables to have mean 0 and sd 1. Then we don’t need a
constant term in the regression.
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Boston data, ridge fit

> library(glmnet)

# ridge fit

> lambda.seq = seq(1,0.001, length=100)

> ridgefit = glmnet(X,y, alpha=0, lambda = lambda.seq)

> ridgecv = cv.glmnet(X,y,lambda = lambda.seq)

> par(mfrow=c(1,2))

> plot(ridgefit, xvar="lambda", label=TRUE)

> abline(v=log(ridgecv$lambda.1se), col="blue")

> plot(ridgecv)

# prediction error

> Pred.err = ridgecv$cvm[ridgecv$lambda==ridgecv$lambda.min]

> Pred.err

[1] 0.2343135
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Ridge trace: Boston data
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Boston data, lasso fit

> # lasso fit

> lambda.seq = seq(1,0.001, length=100)

> lassofit = glmnet(X,y, alpha=1, lambda = lambda.seq)

> lassocv = cv.glmnet(X,y,lambda = lambda.seq)

> par(mfrow=c(1,2))

> plot(lassofit, xvar="lambda", label=TRUE)

> abline(v=log(lassocv$lambda.1se), col="blue")

> plot(lassocv)

> # prediction error

Pred.err = lassocv$cvm[lassocv$lambda==lassocv$lambda.min]

> Pred.err

[1] 0.239059
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Lasso trace: Boston data
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Image data

In the Boston example there are few variables and relatively many
cases . In this situation ridge and the lasso won’t improve much on
ordinary least squares, as we saw in the CV plots. On the other
hand, if we have many more variables than cases, least squares
won’t work, as the normal equations have no unique solution.
However, regularisation will work well in this case.

We illustrate with the data from Assignment 2 in 2016, predicting
the variable left eye center x from the 9216 pixel variables.
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Image data (cont)

These data are adapted from the Kaggle competition ”Facial
Keypoints Detection” described further at
\\https://www.kaggle.com/c/facial-keypoints-detection

There are both training and test sets available on the web page.
The data refer to a collection of about 1900 images of faces,
represented by 96 x 96 pixel arrays. For each pixel, a greyscale
value between 0 and 255 is also recorded. In addition, the
locations of the left eye in the image are also given.
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Image data (cont)

The training and test data sets supplied each have 9218 variables:
These are

left eye center x: the x-coordinate of the center of the left eye
(from the subject’s point of view)

left eye center y: the y-coordinate of the center of the left eye
(from the subject’s point of view)

V1-V9216: The greyscale values of the 9216 pixels in the image.
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Typical image

●
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Image data: ridge fit

We work with the standardized data. See the documentation for glmnet
for the reasons for this. We have a training set of 953 images in a data
frame training.df with 9218 variables (x and y coordinates of the left
eye, plus 9216 pixel variables)

# ridge fit

X = as.matrix(training.df)[,-c(1,2)]

y = training.df[,1]

y = as.vector(scale(y))

X = scale(X)

lambda.seq = seq(0.1,0.001, length=100)

ridgefit = glmnet(X,y, alpha=0, lambda = lambda.seq,

standardize=FALSE)

ridgecv = cv.glmnet(X,y,lambda = lambda.seq)

plot(ridgecv)

Alan Lee Department of Statistics STATS 784 Lecture 10

Page 20/28



Introduction Ridge regression Lasso Regularisation for classification

Example: MSE plot
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Errors

# CV error

CV = min(ridgecv$cvm)

CV

[1] 0.5065697

CV.1se = ridgecv$cvm[ridgecv$lambda==

ridgecv$lambda.1se]

CV.1se

[1] 0.5552499
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Errors

# training error

lambdaMin = ridgecv$lambda.min

coefs=coef(ridgefit, s=lambdaMin)

mypred = cbind(1,X)%*%coefs # no predict function

mean((y-mypred)^2)

[1] 0.00135280 #!!! very small

#test error

newX = scale(test.df[,-c(1,2)])

testpred = predict(ridgefit, newx=newX, s=lambdaMin)

newY = scale(test.df[,1])

mean((newY-testpred)^2)

[1] 0.7029947
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Points to note

I With so many variables, ridge regression is seriously
overfitting.

I Exercise: is the lasso doing the same?

I Scaling issues can be tricky

I Shrinkage helps in this example: reduces MSE from about 0.6
to about 0.5.
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Regularization and classification

We can apply regularization to logistic regression as well: We fit
the model by penalizing the log-likelihood for logistic regression. If
l(β)is the log-likelihood, we estimate the parameters by minimizing

−l(β) + λ
∑
j

β2
j

for ridge, and

−l(β) + λ
∑
j

|βj |

for the lasso.
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Example: Spam data

X =as.matrix(spam.df[,-58])

y = factor(spam.df[,58])

lassofit = glmnet(X,y, alpha=1, family="binomial")

lassocv = cv.glmnet(X,y,lambda = lassofit$lambda,

family="binomial",type.measure="class")

plot(lassocv)

MissClass = lassocv$cvm[lassocv$lambda==

lassocv$lambda.min]

[1] 0.07215823
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Example: Spam data
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