
Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Lecture 7: Data Preprocessing and Feature
Engineering

Alan Lee

Department of Statistics
STATS 784 Lecture 7

August 14, 2017

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 1/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Outline

Introduction

Scaling

Symmetrizing

Data cleaning

Feature selection

Feature engineering

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 2/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Today’s agenda

In this lecture we discuss the importance of selecting, transforming
and imputing the features used in prediction. We will cover

I Scaling

I Transforming

I Data cleaning and imputation

I Feature selection

I Feature engineering

We will use the Boston housing data as a running example. Note:
References to APM refer to Applied Predictive Modeling : Ch 3 of
APM covers the material of this lecture.

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 3/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Scaling
Some of the prediction methods we have discussed work better when the features have
similar magnitudes. For example

I In Neural networks, the starting values are chosen randomly on an interval
around zero. This works better if the features have similar magnitudes. Also,
the regularization penalty will apply equally to all variables if they have similar
magnitudes.

I In ridge regression and the lasso the same argument applies (these will be
discussed in Lecture 10.)

I In unsupervised learning, there are techniques that benefit from having features
with similar magnitudes (e.g. principal components.)

It is usual to scale the continuous variables by subtracting off means and dividing by

standard deviations, so that the scaled data has mean zero and variance one. Note

this only applies to continuous variables! If the data set contains a mixture of

continuous variables and factors we need to split it into two parts. The R function

scale can be used to scale the continuous variables:

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 4/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Scaling: R code

library(MASS)

data(Boston)

make variable chas into a factor

Boston$chas = factor(Boston$chas)

numericCols = unlist(lapply(Boston, is.numeric))

BostonCont = Boston[, numericCols]

BostonFactor =Boston[, !numericCols]

names(BostonFactor) = names(Boston)[!numericCols]

BostonScaled = data.frame(as.data.frame(scale(BostonCont)),

BostonFactor)

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 5/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Symmetrizing

It is also advantageous to transform the variables so that they have
approximately symmetric distributions. The easiest way to do this
is using Box-Cox transformations: we transform a variable x to
x (λ) using the equation

x (λ) =
xλ − 1

λ
.

The value of λ is chosen using a maximum-likelihood argument.
The R function BoxCoxTrans in the caret package can be used.
(Subtracting 1 and dividing by λ makes the transformation
approach a log as λ→ 0.)

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 6/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Symmetrizing: R code

TransCrim = predict(BoxCoxTrans(Boston$crim),

Boston$crim)

par(mfrow=c(1,2))

hist(Boston$crim, nclass=50, main = "Before")

hist(TransCrim, nclass=50, main = "After")

Note the use of the predict function to perform the actual
transformation.

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 7/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Before and after

Before

Boston$crim

F
re

qu
en

cy

0 20 40 60 80

0
50

10
0

15
0

20
0

25
0

30
0

35
0

After

TransCrim

F
re

qu
en

cy

−4 −2 0 2 4

0
5

10
15

20
25

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 8/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Putting it together

The caret function PreProcess does both symmetrizing and
scaling:

numericCols = unlist(lapply(Boston, is.numeric))

BostonCont = Boston[, numericCols]

BostonFactor =Boston[, !numericCols]

names(BostonFactor) = names(Boston)[!numericCols]

trans = preProcess(BostonCont, method = c("BoxCox",

"center", "scale"))

BostonTransScaledCont = predict(trans, BostonCont)

BostonTransScaled = data.frame(BostonTransScaledCont,

BostonFactor)

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 9/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Data cleaning and Imputation

I Data cleaning means correcting any mistakes in the data, which will
usually correspond to impossibly large or impossibly small values.
These will be revealed by range checks and plots, for example all
pairs of scatterplots, or qqplots.

I However, not all outliers (large or small values) are mistakes - they
may reveal interesting patterns, for example the existence of two
different groups of data in the data set.

I Imputation means guessing the values of missing values. Some of
our methods (or at least the software implementations) require that
there be no missing values in the input data set, although others
(e.g.trees) are not unduly bothered by missing values.

I Data cleaning and imputation are a very important phase of any
DM project and can be expected to absorb a big fraction of the
project resources.

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 10/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Data cleaning and Imputation
There are several methods for imputation:

I Complete case analysis: Delete any record that has missing values from the data
set.

I Nearest neighbours: to impute variable x average the value x of the k closest
data points with no missing values.

I Average method: Average the value of x for the non-missing values.

I Hot deck: pick a “similar” record at random and use its value of x .

I Predictive: Fit a model to the data with variable x as the target and use it to
predict the value.

I Single imputation: Draw a value at random from the conditional distribution of
x given the other variables (this will have to be modeled)

I Multiple imputation: Repeatedly draw values at random from the conditional
distribution of x given the other variables (this will have to be modeled),
creating new data sets. Make the predictions with these now complete datasets
and average the predictions.

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 11/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Points to note

I Complete case analysis: This is not recommended. Unless the
missingness is independent of the data, biases can result.

I Nearest neighbours: We have to decide on the definition of
“close points” and the value of k .

I Average method: Easy to implement but crude.

I Hot deck: Ditto.

I Predictive: Better but understates the uncertainty in the
imputation process.

I Single imputation: Again better, respects the uncertainty, but
just a single value.

I Multiple imputation: generally regarded as the best method (a
sample is better than a single observation.)

I We will revist Multiple Imputation in Lecture 11.

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 12/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Feature selection

Features that are unrelated to the target are unlikely to improve the
prediction, and will merely add to the computational burden. Thus, we
can screen out variables that are unrelated, judged on the basis of
correlations for continuous features, and anova tests for factors.

cors = cor(BostonScaled[,1:13])[1:12,13]

barplot(abs(cors), col="red")

cors = cor(BostonTransScaled[,1:13])[1:12,13]

barplot(abs(cors), col="red")

anova.fit = lm(medv~chas, data=BostonTransScaled)

anova(anova.fit)[1,5]

> anova(anova.fit)[1,5]

[1] 0.0002382315

(This is the p-value for the F -test that there is no difference in the

response between the factor levels. Just use it as an index: keep features

with small p-values (say less than 0.1)

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 13/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Correlation plot

crim zn indus nox rm age dis rad tax ptratio black lstat

0.
0

0.
2

0.
4

0.
6

0.
8

All seem to have some relationship to the target (recall that the
best linear model included all the features)

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 14/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Correlation between features

If two features are very highly correlated, it may not be necessary
to include them both in the predictor (as in collinearity in linear
regression). A correlation plot can be useful in identifying groups
of highly correlated predictors.

library(corrplot)

correlations = cor(BostonTransScaled[,1:13])

corrplot(correlations)

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 15/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Correlation plot

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cr
im

zn in
du

s

no
x

rm ag
e

di
s

ra
d

ta
x

pt
ra

tio

bl
ac

k

ls
ta

t

m
ed

v

crim

zn

indus

nox

rm

age

dis

rad

tax

ptratio

black

lstat

medv

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 16/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Correlation matrix

> round(correlations,2)

crim zn indus nox rm age dis rad tax ptratio black lstat medv

crim 1.00 -0.52 0.75 0.81 -0.32 0.67 -0.74 0.84 0.79 0.41 -0.50 0.61 -0.55

zn -0.52 1.00 -0.61 -0.61 0.31 -0.57 0.59 -0.35 -0.30 -0.39 0.19 -0.47 0.37

indus 0.75 -0.61 1.00 0.79 -0.42 0.66 -0.76 0.59 0.68 0.43 -0.38 0.63 -0.55

nox 0.81 -0.61 0.79 1.00 -0.31 0.80 -0.88 0.62 0.65 0.29 -0.40 0.61 -0.50

rm -0.32 0.31 -0.42 -0.31 1.00 -0.25 0.27 -0.21 -0.30 -0.35 0.16 -0.65 0.64

age 0.67 -0.57 0.66 0.80 -0.25 1.00 -0.79 0.46 0.50 0.29 -0.31 0.62 -0.45

dis -0.74 0.59 -0.76 -0.88 0.27 -0.79 1.00 -0.54 -0.58 -0.26 0.35 -0.54 0.39

rad 0.84 -0.35 0.59 0.62 -0.21 0.46 -0.54 1.00 0.80 0.42 -0.42 0.45 -0.42

tax 0.79 -0.30 0.68 0.65 -0.30 0.50 -0.58 0.80 1.00 0.42 -0.43 0.51 -0.54

ptratio 0.41 -0.39 0.43 0.29 -0.35 0.29 -0.26 0.42 0.42 1.00 -0.17 0.42 -0.51

black -0.50 0.19 -0.38 -0.40 0.16 -0.31 0.35 -0.42 -0.43 -0.17 1.00 -0.37 0.39

lstat 0.61 -0.47 0.63 0.61 -0.65 0.62 -0.54 0.45 0.51 0.42 -0.37 1.00 -0.83

medv -0.55 0.37 -0.55 -0.50 0.64 -0.45 0.39 -0.42 -0.54 -0.51 0.39 -0.83 1.00

See the R function findCorrelation in the caret package to see
if any features should be removed.

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 17/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Almost-zero-variance-features

If a feature has all values constant, it contributes nothing to the
prediction. If almost all values are constant (e.g. a binary feature with
very few 1’s) then there may be problems with resampling, and the few
1’s may have an undue influence on the predictor. Such features are best
not included in the modeling. However, tree-based models are not
affected by such features, as they won’t be included in any split. Linear
models will have problems if presented with zero-variance predictors if the
software is not smart enough to exclude them (as lm does). The caret

package has a function nearZeroVar that identifies almost-zero-variance
features (see APM p 55)

> library(caret)

> nearZeroVar(BostonTransScaled)

integer(0)

Returns column numbers of the

near-zero-variance features

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 18/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Dummy variables

You will recall that factors are handled in statistical modelling by turning
them into dummy variables. Most of the modeling software does this
automatically, but sometimes it is necessary to do this explicitly. There is
a function (see APM p 56) dummyVars in the caret package that will do
the job:

> dummy = dummyVars(~chas, data=BostonTransScaled)

> dummy.df = predict(dummy, newdata=BostonTransScaled)

> head(dummy.df)

chas.0 chas.1

1 1 0

2 1 0

3 1 0

4 1 0

5 1 0

6 1 0

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 19/20

Introduction Scaling Symmetrizing Data cleaning Feature selection Feature engineering

Feature engineering

Sometimes we want to make new variables our of old ones: a
process known as feature engineering. Which new variables to
make will be guided by subject matter knowledge. For example

1. Geographical coordinates could be turned into distances

2. Stock prices could be turned into log of the daily changes
(returns)

3. Absolute numbers can be turned into rates

4. Several fertures can be combined into principal components
(see later in the lectures on unsupervised learning)

Alan Lee Department of Statistics STATS 784 Lecture 7

Page 20/20

	Introduction
	Scaling
	Symmetrizing
	Data cleaning
	Feature selection
	Feature engineering

