
TS-621

Multinomial Logit,

Discrete Choice Modeling

An Introduction to Designing Choice Experiments,

and Collecting, Processing, and Analyzing Choice Data

with the SAS R System

Warren F. Kuhfeld

SAS Institute Inc.

January 1, 2000

62

Contents

Introduction 66

Preliminaries 68

Experimental Design Terminology . 68

Efficiency of an Experimental Design . 69

Efficiency of a Choice Design . 69

Customizing the Multinomial Logit Output . 71

Candy Example 73

The Multinomial Logit Model . 73

The Input Data . 75

Fitting the Multinomial Logit Model . 77

Multinomial Logit Model Results . 78

Fitting the Multinomial Logit Model, All Levels . 80

Probability of Choice . 82

Fabric Softener Example 84

Set Up . 84

Designing the Choice Experiment . 85

Examining the Design . 87

Understanding the %MKTDES Macro . 89

Randomizing the Design, Postprocessing . 91

Generating the Questionnaire . 92

Entering the Data . 94

Processing the Data . 94

Binary Coding . 97

Fitting the Multinomial Logit Model . 98

Multinomial Logit Model Results . 99

Probability of Choice . 101

Custom Questionnaires . 102

Processing the Data for Custom Questionnaires . 105

Vacation Example, Big Designs 107

Set Up . 108

Designing the Choice Experiment . 108

63

Candidate Sets and How PROC OPTEX Works . 111

Generating the Final Design . 112

Examining the Design . 113

Blocking and Randomizing the Design . 119

Generating the Questionnaire . 120

Entering and Processing the Data . 122

Binary Coding . 125

Quantitative Price Effect . 129

Quadratic Price Effect . 131

Effects Coding . 133

Alternative-Specific Effects . 136

PROC FACTEX Code Generated by the %MKTDES Macro . 140

Vacation Example, Big Designs and Asymmetry 143

Choosing the Number of Choice Sets . 144

Designing the Choice Experiment . 145

Using a Tabled Design as a Candidate Set . 149

Ensuring that Certain Key Interactions are Estimable . 151

Examining the Design . 153

Blocking an Existing Design . 158

Generating the Questionnaire . 158

Generating Artificial Data . 161

Reading, Processing, and Analyzing the Data . 162

Aggregating the Data . 166

Brand Choice Example With Aggregate Data 168

Processing the Data . 168

Simple Price Effects . 170

Alternative-Specific Price Effects . 172

Mother Logit Model . 174

Aggregating the Data . 181

Choice and Breslow Likelihood Comparison . 186

Food Product Example with Asymmetry and Availability Cross Effects 187

The Multinomial Logit Model . 187

Set Up . 187

64

Designing the Choice Experiment . 189

When You Have a Long Time to Search for an Efficient Design . 191

Recreating the Best Design . 193

Examining the Design . 194

Examining the Submatrices . 195

Examining the Information and Variance Matrices . 196

Examining the Aliasing Structure . 197

The Final Design . 199

Generating Artificial Data . 200

Processing the Data . 202

Cross Effects . 205

Coding and Fitting the Cross Effects Model . 210

Multinomial Logit Model Results . 211

Modeling Subject Attributes . 214

When Balance is of Primary Importance . 221

Allocation of Prescription Drugs 225

Designing the Allocation Experiment . 225

Processing the Data . 229

Coding and Analysis . 234

Multinomial Logit Model Results . 235

Analyzing Proportions . 237

Chair Design with Generic Attributes 239

Purely Generic Attributes, Alternative Swapping . 239

Generic Attributes, a Constant Alternative, and Alternative Swapping 243

Generic Attributes, a Constant Alternative, and Choice Set Swapping 246

Design Algorithm Comparisons . 248

Other Design Strategies 250

Very Big Designs . 250

Improving an Existing Design . 252

When Some Choice Sets are Fixed in Advance . 254

Six-Level Factors . 256

Ten-Level Factors . 259

65

The Macros 261

%MKTDES Macro Overview . 261

%MKTDES Macro Options . 263

%MKTDES6 Macro Overview . 266

%MKTDES6 Macro Options . 267

%MKTDES10 Macro Overview . 267

%MKTDES10 Macro Options . 267

%MKTRUNS Macro Overview . 268

%MKTRUNS Macro Options . 269

%CHOICEFF Macro Overview . 270

%CHOICEFF Macro Options . 278

%MKTROLL Macro Overview . 281

%MKTROLL Macro Options . 284

%MKTMERGE Macro Overview . 285

%MKTMERGE Macro Options . 285

%MKTALLO Macro Overview . 286

%MKTALLO Macro Options . 287

%PHCHOICE Macro Overview . 288

%PHCHOICE Macro Options . 291

Concluding Remarks 292

References 293

Multinomial Logit Models (SUGI Paper) 294

Abstract . 294

Introduction . 294

Modeling Discrete Choice Data . 295

Fitting Discrete Choice Models . 296

Cross-Alternative Effects . 301

Final Comments . 306

References . 306

Index 308

66

Multinomial Logit, Discrete Choice Modeling

This report shows how to use the multinomial logit model (Manski and McFadden, 1981; Louviere and Wood-
worth, 1983) to investigate consumer’s stated choices. The multinomial logit model is an alternative to full-profile
conjoint analysis and is extremely popular in marketing research (Louviere, 1991; Carson et. al., 1994). The
purpose of this report is to illustrate designing a choice experiment, preparing the questionnaire, inputting and
processing the data, performing the analysis, and interpreting the results. Discrete choice, using the multinomial
logit model, is sometimes referred to as “choice-based conjoint.” However, discrete choice uses a different model
from full-profile conjoint analysis. Discrete choice applies a nonlinear model to aggregate choice data, whereas
full-profile conjoint analysis applies a linear model to individual-level rating or ranking data.

This report is the January 1, 2000 edition, and it is a major revision of the May 1996 report and other earlier
reports. This report uses macros and features of the SAS System that are new in Version 8, whereas the May
1996 and earlier reports were written for Version 6 of the SAS System. This report is available as a PDF file from
the Technical Support web site as http://ftp.sas.com/techsup/download/technote/ts621.pdf. It is also available via
anonymous FTP from ftp.sas.com, file techsup/download/technote/ts621.pdf. SAS code examples are available
via WWW by connecting to http://www.sas.com/techsup/download/stat/ and getting mlogit8.sas; via anonymous
ftp, from ftp.sas.com, get techsup/download/stat/mlogit8.sas. This information is provided by SAS Institute Inc
as a service to its users. It is provided “as is.” There are no warranties, expressed or implied, as to merchantability
or fitness for a particular purpose regarding the accuracy of the materials or code contained herein.

If you are familiar with the May 1996 or earlier editions of this report, you will see several important differences.
Much of our work is now done with autocall macros. See page 261 for more information on autocall macros.

� We now use the autocall macro %MKTDES to generate most of our experimental designs. It is easier
to use and usually produces better results than the methods suggested in earlier reports. The macro is
documented starting on page 261 of this report.

� We use the %MKTRUNS autocall macro to suggest design sizes. See page 268 for documentation.

� We use the %CHOICEFF autocall macro to generate certain specialized choice designs. See page 270 for
documentation.

� We use the autocall macros %MKTROLL, %MKTMERGE, and %MKTALLO to prepare the data and
design for analysis. These macros are not part of the autocall library for Version 8.0 but will be for Version
8.10 and subsequent releases of the SAS System. For Version 8.0, you can obtain these macros by writing
saswfk@wnt.sas.com or by getting the code as described previously. See pages 281, 285, and 286 for
documentation.

� We use PROC TRANSREG to do all of our design coding. With Version 7 and Version 8 of the SAS R

System, PROC TRANSREG has new options and long names and labels, which makes it well suited for
coding choice models.

� We use the autocall macro %PHCHOICE to customize our printed output. This macro uses PROC TEM-
PLATE and ODS (Output Delivery System) to customize the output of PROC PHREG, which fits the
multinomial logit model. See page 288 for documentation.

Several examples are discussed including some new ones.�

� The candy example is a first, very simple example that discusses the multinomial logit model, the input
data, analysis, results, and computing probability of choice.

� The fabric softener example is a small, more realistic example that discusses designing the choice exper-
iment, randomization, generating the questionnaire, entering and processing the data, analysis, results,
probability of choice, and custom questionnaires.

�All of the sample data sets are artificially generated.

67

� The first vacation example is a larger, symmetric example that discusses designing the choice experiment,
how PROC OPTEX works, blocks, randomization, generating the questionnaire, entering and processing
the data, coding, and alternative-specific effects.

� The second vacation example is a larger, asymmetric example that discusses designing the choice exper-
iment, coding down, pseudo-factors, using a tabled design as a candidate set, evaluating the efficiency of
a given design, blocks, blocking an existing design, interactions, generating the questionnaire, generating
artificial data, reading, processing, and analyzing the data, aggregating the data to save time and memory.

� The brand choice example is a small example that discusses the processing of aggregate data, the mother
logit model, and the likelihood function.

� The food product example is a medium sized example that discusses asymmetry, coding, availability cross
effects, interactions, overnight design searches, modeling subject attributes, and designs when balance is
of primary importance.

� The drug allocation example is a small example that discusses data processing for studies where respon-
dents potentially make multiple choices.

� The chair example is a purely generic-attributes study, and it uses the %CHOICEFF macro to create exper-
imental designs.

� The next section contains miscellaneous examples including designs with many factors, improving an
existing design, when some choice sets are fixed in advance, six-level factors, and ten-level factors.

This report would not be possible without the help of Randy Tobias who contributed to the discussion of
experimental design, and Ying So who contributed to the discussion of analysis.

68

Preliminaries
This section defines some design terms that we will use later and shows how to customize the multinomial logit
output listing. Impatient readers may skip ahead to the candy example on page 73 and refer back to this section
as needed.

Experimental Design Terminology
An experimental design is a plan for running an experiment. The factors of an experimental design are variables
that have two or more fixed values, or levels. Experiments are performed to study the effects of the factor levels
on the dependent variable. In a discrete-choice study, the factors are the attributes of the hypothetical products
or services, and the response is choice. For example, the following table contains an experimental design with
three factors, Brand 1 price, Brand 2 price, and Brand 3 price. Each factor has two levels, $1.99 and $2.99.

Linear Design
For a Choice Model

Brand 1 Brand 2 Brand3
1.99 1.99 1.99
1.99 1.99 2.99
1.99 2.99 1.99
1.99 2.99 2.99
2.99 1.99 1.99
2.99 1.99 2.99
2.99 2.99 1.99
2.99 2.99 2.99

The most obvious example of an experimental design is the full-factorial design, which consists of all possible
combinations of the levels of the factors. For example, with five factors, two at four levels and three at five
levels (denoted 4253), there are 4 � 4 � 5 � 5 � 5 = 2000 combinations. In a full-factorial design, all main
effects, all two-way interactions, and all higher-order interactions are estimable and uncorrelated. The problem
with a full-factorial design is that, for most practical situations, it is too cost-prohibitive and tedious to have
subjects consider all possible combinations. For this reason, researchers often use fractional-factorial designs,
which have fewer runs than full-factorial designs. The price of having fewer runs is that some effects become
confounded. Two effects are confounded or aliased when they are not distinguishable from each other.

A special type of fractional-factorial design is the orthogonal array. An orthogonal array or orthogonal design
is one in which all estimable effects are uncorrelated. Orthogonal arrays are categorized by their resolution. The
resolution identifies which effects, possibly including interactions, are estimable. If resolution (r) is odd, then
effects of order e = (r � 1)=2 or less are estimable free of each other. However, at least some of the effects
of order e are confounded with interactions of order e + 1. If r is even, then effects of order e = (r � 2)=2

are estimable free of each other and are also free of interactions of order e + 1. For example, for resolution
III designs, all main effects are estimable free of each other, but some of them are confounded with two-factor
interactions. For resolution V designs, all main effects and two-factor interactions are estimable free of each
other. Higher resolutions require larger designs. Orthogonal arrays come in specific numbers of runs (such as
16, 18, 20, 24, 27, 28, ...) for specific numbers of factors with specific numbers of levels.

Resolution III orthogonal arrays are frequently used in marketing research. The term “orthogonal array,” as it
is used in practice, is imprecise. It refers to designs that are both orthogonal and balanced, and hence optimal.
It also refers to designs that are orthogonal but not balanced, and hence potentially nonoptimal. A design is
balanced when each level occurs equally often within each factor, which means the intercept is orthogonal to
each effect. Imbalance is a generalized form of nonorthogonality, which increases the variances of the parameter
estimates.

69

Efficiency of an Experimental Design
The goodness or efficiency of an experimental design can be quantified. Common measures of the efficiency
of an (ND � p) design matrix X are based on the information matrix X 0

X. The variance-covariance matrix of
the vector of parameter estimates � in a least-squares analysis is proportional to (X 0

X)�1. An efficient design
will have a “small” variance matrix, and the eigenvalues of (X 0

X)�1 provide measures of its “size.” The two
most prominent efficiency measures are based on the idea of quantifying size by averaging (in some sense) the
eigenvalues or variances. A-efficiency is a function of the arithmetic mean of the eigenvalues, which is also
the arithmetic mean of the variances and is given by trace ((X 0

X)�1)=p. (The trace is the sum of the diagonal
elements of a matrix, which is the sum of the eigenvalues.) D-efficiency is a function of the geometric mean of the
eigenvalues, which is given by j(X0

X)�1j1=p. (The determinant, j(X0
X)�1j, is the product of the eigenvalues of

(X0
X)�1.) A third common efficiency measure, G-efficiency, is based on �M , the maximum standard error for

prediction over the candidate set. All three of these criteria are convex functions of the eigenvalues of (X 0
X)�1

and hence are usually highly correlated.

For all three criteria, if a balanced and orthogonal design exists, then it has optimum efficiency; conversely,
the more efficient a design is, the more it tends toward balance and orthogonality. A design is balanced and
orthogonal when (X0

X)�1 is diagonal (for a suitably coded X). A design is orthogonal when the submatrix of
(X0

X)�1, excluding the row and column for the intercept, is diagonal; there may be off-diagonal nonzeros for
the intercept. A design is balanced when all off-diagonal elements in the intercept row and column are zero.

These measures of efficiency can be scaled to range from 0 to 100 (for a suitably coded X):

A-efficiency = 100�
1

ND trace ((X0X)�1)=p

D-efficiency = 100�
1

ND j(X0X)�1j1=p

G-efficiency = 100�

p
p=ND

�M

These efficiencies measure the goodness of the design relative to hypothetical orthogonal designs that may be
far from possible, so they are not useful as absolute measures of design efficiency. Instead, they should be used
relatively, to compare one design to another for the same situation. Efficiencies that are not near 100 may be
perfectly satisfactory. Throughout this report, we will use the %MKTDES macro and PROC OPTEX to find
good, efficient experimental designs.

Efficiency of a Choice Design
All of the theory in the preceding section concerned linear models. In linear models, the variances of the pa-
rameter estimates �̂ are proportional to (X0

X)�1. In contrast, the variances of the parameter estimates �̂ in the
multinomial logit model are given by

V (�̂) = �

�
@
2
`(�)

@�2

��1
=

"
�nk=1N

"
�mj=1 exp(x

0
j�)xjx

0
j

�mj=1 exp(x
0
j�)

�
(�mj=1 exp(x

0
j�)xj)(�

m
j=1 exp(x

0
j�)xj)

0

(�mj=1 exp(x
0
j�))

2

##�1

where

`(�) = �n
k=1

exp((�mj=1fjx
0
j)�)

(�mj=1 exp(x
0
j�))

N

70

m – brands
n – choice sets
N – people

We will often create experimental designs for choice models using efficiency criteria for linear models. Consider
an extremely simple example of three brands and two prices. We might use linear model theory to create a design
for a full-profile conjoint study. The full-profile conjoint design has two factors, one for brand and one for price.

Full-Profile
Conjoint Design
Brand Price

1 1.99
1 2.99
2 1.99
2 2.99
3 1.99
3 2.99

For the same problem, we might use linear model theory to create a “linear” design from which we will construct
a choice design. This design has three factors: brand 1 price, brand 2 price, and brand 3 price.

Linear Design
Brand 1 Brand 2 Brand3

1.99 1.99 1.99
1.99 2.99 2.99
2.99 1.99 2.99
2.99 2.99 1.99

When we fit the choice model, we will construct a choice design from the linear design that looks quite different.
See the left panel of the next table. When we code the design, it could look something like the right panel.

Choice Design Choice Design Coding
Brand 1 Brand 2 Brand 3

Brand Price Brand 1 Brand 2 Brand 3 Price Price Price
1 1.99 1 0 0 1.99 0.00 0.00
2 1.99 0 1 0 0.00 1.99 0.00
3 1.99 0 0 1 0.00 0.00 1.99
1 1.99 1 0 0 1.99 0.00 0.00
2 2.99 0 1 0 0.00 2.99 0.00
3 2.99 0 0 1 0.00 0.00 2.99
1 2.99 1 0 0 2.99 0.00 0.00
2 1.99 0 1 0 0.00 1.99 0.00
3 2.99 0 0 1 0.00 0.00 2.99
1 2.99 1 0 0 2.99 0.00 0.00
2 2.99 0 1 0 0.00 2.99 0.00
3 1.99 0 0 1 0.00 0.00 1.99

Each group of three rows in the choice design forms one choice set. The linear design has one factor for each
attribute of each alternative (or brand), and brand is not a factor in the linear design. Brand is a “bin” into
which the other factors are collected. In the choice design, brand and price are both factors, but they have been
rearranged from one row per choice set to one row per alternative per choice set. For this problem, with only
one attribute per brand, the first row of the choice design matrix corresponds to the first value in the linear design
matrix, Brand 1 at $1.99. The second row of the choice design matrix corresponds to the second value in the
linear design matrix, Brand 2 at $1.99. The third row of the choice design matrix corresponds to the third value
in the linear design matrix, Brand 3 at $1.99, and so on. We will go through how to do all these things many

71

times in the examples. The point now is to notice that the design matrix for a linear model is different from the
design matrix for a choice model. They aren’t even the same size!

We make a good design for a linear model by picking our x’s to minimize functions of (X 0
X)�1. In the choice

model, ideally we would like to minimize functions of

V (�̂) =

"
�nk=1N

"
�mj=1 exp(x

0
j�)xjx

0
j

�mj=1 exp(x
0
j�)

�
(�mj=1 exp(x

0
j�)xj)(�

m
j=1 exp(x

0
j�)xj)

0

(�mj=1 exp(x
0
j�))

2

##�1

We cannot do this unless we know �, and if we knew �, we would not need to do the experiment. (However, in
the chair example on pages 239�249, we will see how to make an efficient choice design when we are willing to
make assumptions about �.)

Certain assumptions must be made before applying ordinary general-linear-model theory to problems in mar-
keting research. The usual goal in linear modeling is to estimate parameters and test hypotheses about those
parameters. Typically, independence and normality are assumed. In full-profile conjoint analysis, each subject
rates all products and separate ordinary-least-squares analyses are run for each subject. This is not a standard
general linear model; in particular, observations are not independent and normality cannot be assumed. Discrete
choice models, which are nonlinear, are even more removed from the general linear model.

Marketing researchers have always made the critical assumption that designs that are good for general linear
models are also good designs for conjoint analysis and discrete choice. We also make this assumption. We
will assume that an efficient design for a linear model is a good design for the multinomial logit model used
in discrete choice studies. We assume that if we array the design in the linear fashion (one row per choice set
and all of the attributes of all of the alternatives comprise that row) and if we strive for linear-model efficiency
(near balance and orthogonality), then we will have a good design for measuring the utility of each alternative
and the contributions of the factors to that utility. The design techniques discussed in this book are based on this
assumption and have been used quite successfully in the field for many years.

In most of the examples, we will use the %MKTDES macro or PROC OPTEX to create a good linear design,
from which we will construct our choice design. This seems to be a good safe strategy. It is safe in the sense that
you have enough choice sets and collect enough information so that very complex models, including models with
alternative-specific effects, availability effects, and cross-effects, can be fit. However, it is good to remember that
when you run the %MKTDES macro or PROC OPTEX and you get an efficiency value, it corresponds to the
linear design, not the choice design. It is a surrogate for the criterion of interest, the efficiency of the choice
design, which is unknowable unless you know the parameters.

Customizing the Multinomial Logit Output
The multinomial logit model for discrete choice experiments is fit using the SAS/STAT R procedure PHREG
(proportional hazards regression), with the ties=breslow option. The likelihood function of the multinomial
logit model has the same form as a survival analysis model fit by PROC PHREG. The output from PROC PHREG
is primarily designed for survival analysis studies. Before we fit the multinomial logit model with PROC PHREG,
we can customize the output to make it more appropriate for choice experiments. We will use the autocall macro
%PHCHOICE macro. See page 261 for information on autocall macros. You can run the following macro to
customize PROC PHREG output.

%phchoice(on)

The macro uses PROC TEMPLATE and ODS (Output Delivery System) to customize the output of PROC
PHREG. Running this code edits the templates and stores copies in SASUSER. These changes will remain in
effect until you delete them, so typically, you only have to run this macro once. Note that these changes assume
that each effect in the choice model has a variable label associated with it so there is no need to print variable
names. If you are coding with PROC TRANSREG, this will usually be the case. To return to the default output
from PROC PHREG, run the following macro.

72

%phchoice(off)

See page 288 for more information on the %PHCHOICE macro.

73

Candy Example
We begin with a very simple example. In this example, each of ten subjects was presented with eight different
chocolate candies and asked to choose one. The eight candies consist of the 2 3 combinations of dark or milk
chocolate, soft or chewy center, and nuts or no nuts. Each subject saw all eight candies and made one choice.
Experimental choice data such as these are typically analyzed with a multinomial logit model.

The Multinomial Logit Model
The multinomial logit model assumes that the probability that an individual will choose one of them alternatives,
ci, from choice set C is

p(cijC) =
exp(U(ci))Pm
j=1 exp(U(cj))

=
exp(xi�)Pm
j=1 exp(xj�)

where xi is a vector of alternative attributes and � is a vector of unknown parameters. U(c i) = xi� is the utility
for alternative ci, which is a linear function of the attributes. The probability that an individual will choose one
of the m alternatives, ci, from choice set C is the exponential of the utility of the alternative divided by the sum
of all of the exponentiated utilities.

There are m = 8 attribute vectors in this example, one for each alternative. Let x = (Dark/Milk, Soft/Chewy,
Nuts/No Nuts) where Dark/Milk = (1 = Dark, 0 = Milk), Soft/Chewy = (1 = Soft, 0 = Chewy), Nuts/No Nuts =
(1 = Nuts, 0 = No Nuts). The eight attribute vectors are

x1 = (0 0 0) (Milk, Chewy, No Nuts)
x2 = (0 0 1) (Milk, Chewy, Nuts)
x3 = (0 1 0) (Milk, Soft, No Nuts)
x4 = (0 1 1) (Milk, Soft, Nuts)
x5 = (1 0 0) (Dark, Chewy, No Nuts)
x6 = (1 0 1) (Dark, Chewy, Nuts)
x7 = (1 1 0) (Dark, Soft, No Nuts)
x8 = (1 1 1) (Dark, Soft, Nuts)

Say, hypothetically that� 0 = (4 �2 1): That is, the part-worth utility for dark chocolate is 4, the part-worth
utility for soft center is -2, and the part-worth utility for nuts is 1. Then the utility for each of the combinations,
xi�, would be as follows.

U(Milk, Chewy, No Nuts) = 0� 4 + 0��2 + 0� 1 = 0
U(Milk, Chewy, Nuts) = 0� 4 + 0��2 + 1� 1 = 1
U(Milk, Soft, No Nuts) = 0� 4 + 1��2 + 0� 1 = -2
U(Milk, Soft, Nuts) = 0� 4 + 1��2 + 1� 1 = -1
U(Dark, Chewy, No Nuts) = 1� 4 + 0��2 + 0� 1 = 4
U(Dark, Chewy, Nuts) = 1� 4 + 0��2 + 1� 1 = 5
U(Dark, Soft, No Nuts) = 1� 4 + 1��2 + 0� 1 = 2
U(Dark, Soft, Nuts) = 1� 4 + 1��2 + 1� 1 = 3

The denominator of the probability formula,
Pm

j=1 exp(xj�), is exp(0) + exp(1) + exp(�2) + exp(�1) +

exp(4) + exp(5) + exp(2) + exp(3)+ = 234:707. The probability that each alternative is chosen,
exp(xi�)=

Pm
j=1 exp(xj�), is

74

p(Milk, Chewy, No Nuts) = exp(0) / 234.707 = 0.004
p(Milk, Chewy, Nuts) = exp(1) / 234.707 = 0.012
p(Milk, Soft, No Nuts) = exp(-2) / 234.707 = 0.001
p(Milk, Soft, Nuts) = exp(-1) / 234.707 = 0.002
p(Dark, Chewy, No Nuts) = exp(4) / 234.707 = 0.233
p(Dark, Chewy, Nuts) = exp(5) / 234.707 = 0.632
p(Dark, Soft, No Nuts) = exp(2) / 234.707 = 0.031
p(Dark, Soft, Nuts) = exp(3) / 234.707 = 0.086

Note that even combinations with a negative or zero utility have a nonzero probability of choice. Also note that
adding a constant to the utilities will not change the probability of choice, however multiplying by a constant
will.

Probability of choice is a nonlinear and increasing function of utility. The following plot shows the relationship
between utility and probability of choice for this hypothetical situation.

data x;
do u = -2 to 5 by 0.1;

p = exp(u) / 234.707;
output;
end;

run;

proc gplot;
title ’Probability of Choice as a Function of Utility’;
plot p * u;
symbol1 i=join;
run; quit;

p

0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

u

- 2 - 1 0 1 2 3 4 5

This plot shows the function exp(�2) to exp(5), scaled into the range zero to one, the range of probability values.
For the small negative utilities, the probability of choice is essentially zero. As utility increases beyond two, the
function starts rapidly increasing.

In this example, the chosen alternatives are x5, x6, x7, x5, x2, x6, x2, x6, x6, x6. Alternative x2 was chosen 2
times, x5 was chosen 2 times, x6 was chosen 5 times, and x7 was chosen 1 time. The choice model likelihood
for these data is the product of ten terms, one for each choice set for each subject. Each term consists of the
probability that the chosen alternative is chosen. For each choice set, the utilities for all of the alternatives enter
into the denominator, and the utility for the chosen alternative enters into the numerator. The choice model
likelihood for these data is

75

LC =
exp(x5�)hP
8

j=1 exp(xj�)
i � exp(x6�)hP

8

j=1 exp(xj�)
i � exp(x7�)hP

8

j=1 exp(xj�)
i � exp(x5�)hP

8

j=1 exp(xj�)
i �

exp(x2�)hP
8

j=1 exp(xj�)
i � exp(x6�)hP

8

j=1 exp(xj�)
i � exp(x2�)hP

8

j=1 exp(xj�)
i � exp(x6�)hP

8

j=1 exp(xj�)
i �

exp(x6�)hP
8

j=1 exp(xj�)
i � exp(x6�)hP

8

j=1 exp(xj�)
i

=
exp((2x2 + 2x5 + 5x6 + x7)�)hP

8

j=1 exp(xj�)
i10

The Input Data
The data set consists of one observation for each alternative of each choice set for each subject. (A typical choice
study has more than one choice set per person. This first example only has one choice set to help keep it simple.)
All of the chosen and unchosen alternatives must appear in the data set. The data set must contain variables that
identify the subject, the choice set, which alternative was chosen, and the set of alternatives from which it was
chosen. In this example, the data set contains 10� 1� 8 = 80 observations: 10 subjects each saw 1 choice set
with 8 alternatives.

Typically, two variables are used to identify the choice sets, subject ID and choice set within subject. In this
simple case where each subject only made one choice, the choice set variable is not necessary. However we use
it here to illustrate the general case. The variable Subj is the subject number, and Set identifies the choice set
within subject. The chosen alternative is indicated by c=1, which means first choice. All second and subsequent
choices are unobserved, so the unchosen alternatives are indicated by c=2, which means that all we know is
that they would have been chosen after the first choice. Both the chosen and unchosen alternatives must appear
in the input data set since both are needed to construct the likelihood function. The c=2 observations enter
into the denominator of the likelihood function, and the c=1 observations enter into both the numerator and the
denominator of the likelihood function. In this input DATA step, the data for four alternatives appear on one
line, and all of the data for a choice set of eight alternatives appear on two lines. The DATA step shows data
entry in the way that requires the fewest programming statements. Each execution of the input statement reads
information about one alternative. The @@ in the input statement specifies that more data may follow on the
same line.

76

title ’Choice of Chocolate Candies’;

data chocs;
input Subj c Dark Soft Nuts @@;
Set = 1;
datalines;

1 2 0 0 0 1 2 0 0 1 1 2 0 1 0 1 2 0 1 1
1 1 1 0 0 1 2 1 0 1 1 2 1 1 0 1 2 1 1 1
2 2 0 0 0 2 2 0 0 1 2 2 0 1 0 2 2 0 1 1
2 2 1 0 0 2 1 1 0 1 2 2 1 1 0 2 2 1 1 1
3 2 0 0 0 3 2 0 0 1 3 2 0 1 0 3 2 0 1 1
3 2 1 0 0 3 2 1 0 1 3 1 1 1 0 3 2 1 1 1
4 2 0 0 0 4 2 0 0 1 4 2 0 1 0 4 2 0 1 1
4 1 1 0 0 4 2 1 0 1 4 2 1 1 0 4 2 1 1 1
5 2 0 0 0 5 1 0 0 1 5 2 0 1 0 5 2 0 1 1
5 2 1 0 0 5 2 1 0 1 5 2 1 1 0 5 2 1 1 1
6 2 0 0 0 6 2 0 0 1 6 2 0 1 0 6 2 0 1 1
6 2 1 0 0 6 1 1 0 1 6 2 1 1 0 6 2 1 1 1
7 2 0 0 0 7 1 0 0 1 7 2 0 1 0 7 2 0 1 1
7 2 1 0 0 7 2 1 0 1 7 2 1 1 0 7 2 1 1 1
8 2 0 0 0 8 2 0 0 1 8 2 0 1 0 8 2 0 1 1
8 2 1 0 0 8 1 1 0 1 8 2 1 1 0 8 2 1 1 1
9 2 0 0 0 9 2 0 0 1 9 2 0 1 0 9 2 0 1 1
9 2 1 0 0 9 1 1 0 1 9 2 1 1 0 9 2 1 1 1
10 2 0 0 0 10 2 0 0 1 10 2 0 1 0 10 2 0 1 1
10 2 1 0 0 10 1 1 0 1 10 2 1 1 0 10 2 1 1 1
;

proc print data=chocs noobs;
where subj <= 2;
var subj set c dark soft nuts;
run;

Choice of Chocolate Candies

Subj Set c Dark Soft Nuts

1 1 2 0 0 0
1 1 2 0 0 1
1 1 2 0 1 0
1 1 2 0 1 1
1 1 1 1 0 0
1 1 2 1 0 1
1 1 2 1 1 0
1 1 2 1 1 1

2 1 2 0 0 0
2 1 2 0 0 1
2 1 2 0 1 0
2 1 2 0 1 1
2 1 2 1 0 0
2 1 1 1 0 1
2 1 2 1 1 0
2 1 2 1 1 1

These next steps illustrate a more typical form of data entry. The experimental design is stored in a separate data
set from the choices and is merged with the choices as the data are read, which produces the same results as the
preceding steps.

77

* Alternative Form of Data Entry;

data combos; /* Read the design matrix. */
input Dark Soft Nuts;
datalines;

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
;

data chocs; /* Create the data set. */
input Choice @@; drop choice; /* Read the chosen combo number. */
Subj = _n_; Set = 1; /* Store subject, choice set number. */
do i = 1 to 8; /* Loop over alternatives. */

c = 2 - (i eq choice); /* Designate chosen alternative. */
set combos point=i; /* Read design matrix. */
output; /* Output the results. */
end;

datalines;
5 6 7 5 2 6 2 6 6 6
;

The variable Choice is the number of the chosen alternative. For each choice set, each of the eight observations
in the experimental design is read. The point= option in the set statement is used to read the ith observation
of the data set COMBOS. When i (the alternative index) equals Choice (the number of the chosen alterna-
tive), the logical expression (i eq choice) equals 1; otherwise it is 0. So the statement c = 2 - (i eq
choice) sets c to 1 (two minus one) when the alternative is chosen and 2 (two minus zero) otherwise. The
entire eight observations in the COMBOS data set is read 10 times, once per subject. The resulting data set is the
same as the one we created previously. In all of the remaining examples, we will simplify this process further by
using the %MKTMERGE macro to merge the design and data. The basic logic underlying this macro is shown
in the preceding step. The number of a chosen alternative is read, then each alternative of the choice set is read,
the chosen alternative is flagged (c = 1), and the unchosen alternatives are flagged (c = 2). One observation per
choice set per subject is read from the input data stream, and one observation per alternative per choice set per
subject is written.

Fitting the Multinomial Logit Model
The data are now in the right form for analysis. In the SAS System, the multinomial logit model is fit with
the SAS/STAT procedure PHREG (proportional hazards regression), with the ties=breslow option. The
likelihood function of the multinomial logit model has the same form as a survival analysis model fit by PROC
PHREG.

In a discrete choice study, subjects are presented with sets of alternatives and asked to choose the most preferred
alternative. The data for one choice set consist of one alternative that was chosen andm�1 alternatives that were
not chosen. First choice was observed. Second and subsequent choices are not observed; it is only known that
the other alternatives would have been chosen after the first choice. In survival analysis, subjects (rats, people,
light bulbs, machines, and so on) are followed until a specific event occurs (such as failure or death) or until the
experiment ends. The data are event times. The data for subjects who have not experienced the event (such as
those who survive past the end of a medical experiment) are censored. The exact event time is not known, but it is
known to exceed the censored time. In a discrete choice study, first choice occurs at time one, and all subsequent
choices (second choice, third choice, and so on) are unobserved or censored. The models are the same. To fit the
multinomial logit model, use PROC PHREG as follows.

78

proc phreg data=chocs outest=betas;
strata subj set;
model c*c(2) = dark soft nuts / ties=breslow;
label dark = ’Dark Chocolate’ soft = ’Soft Center’ nuts = ’With Nuts’;
run;

The data= option specifies the input data set. The outest= option requests an output data set called BETAS
with the parameter estimates. The strata statement specifies that each combination of the variables Set and
Subj forms a set from which a choice was made. Each term in the likelihood function is a stratum. There is
one term or stratum per choice set per subject, and each is composed of information about the chosen and all the
unchosen alternatives.

In the left side of the model statement, you specify the variables that indicate which alternatives were chosen
and unchosen. While this could be two different variables, we will use one variable c to provide both pieces
of information. The response variable c has values 1 (chosen or first choice) and 2 (unchosen or subsequent
choices). The first c of the c*c(2) in the model statement specifies that c indicates which alternative was
chosen. The second c specifies that c indicates which alternatives were not chosen, and (2) means that obser-
vations with values of 2 were not chosen. When c is set up with 1 equals choice and 2 equals unchosen, always
specify c*c(2) on the left of the equal sign in the model statement.� The attribute variables are specified after
the equal sign. Specify ties=breslow after a slash to explicitly specify the likelihood function for the multi-
nomial logit model.y The label statement is added since we are using a template that assumes each variable
has a label.

Multinomial Logit Model Results
The output is shown next. Recall that we used %phchoice(on) on page 71 to customize the output from
PROC PHREG.

Choice of Chocolate Candies

The PHREG Procedure

Model Information

Data Set WORK.CHOCS
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

�This syntax allows second choice (c=2) and subsequent choices (c=3, c=4, ...) to be entered. Just enter in parentheses one plus the
number of choices actually made. For example with first and second choice data specify c*c(3). Note however that some experts believe
that second and subsequent choice data are much less reliable than first choice data.

yDo not specify any other ties= options; ties=breslow specifies the most efficient and always appropriate way to fit the
multinomial logit model.

79

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Subj Set Alternatives Alternatives Chosen

1 1 1 8 1 7
2 2 1 8 1 7
3 3 1 8 1 7
4 4 1 8 1 7
5 5 1 8 1 7
6 6 1 8 1 7
7 7 1 8 1 7
8 8 1 8 1 7
9 9 1 8 1 7

10 10 1 8 1 7

Total 80 10 70

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 41.589 28.727
AIC 41.589 34.727
SBC 41.589 35.635

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.8618 3 0.0049
Score 11.6000 3 0.0089
Wald 8.9275 3 0.0303

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Dark Chocolate 1 1.38629 0.79057 3.0749 0.0795
Soft Center 1 -2.19722 1.05409 4.3450 0.0371
With Nuts 1 0.84730 0.69007 1.5076 0.2195

The first table, “Model Information,” contains the input data set name, dependent variable name, censoring
information, and tie handling option.

The “Summary of Subjects, Sets, and Chosen and Unchosen Alternatives” table is printed by default and should
be used to check the data entry. In general, there are as many strata as there are combinations of the Subj
and Set variables. In this case, there are ten strata. Each stratum must be composed of m alternatives. In this
case, there are eight alternatives. The number of chosen alternatives should be 1, and the number of unchosen
alternatives is m � 1 (in this case 7). Always check the summary table to ensure that the data are arrayed
correctly.

The next table, “Convergence Status,” shows the iterative algorithm successfully converged. The next tables,

80

“Model Fit Statistics” and “Testing Global Null Hypothesis: BETA=0,” contain the overall fit of the model. The
-2 LOG L statistic under “With Covariates” is 28.727 and the Chi-Square statistic is 12.8618 with 3 df (p=0.0049),
which is used to test the null hypothesis that the attributes do not influence choice. At common alpha levels such
as 0.05 and 0.01, we would reject the null hypothesis of no relationship between choice and the attributes. Note
that 41.589 (-2 LOG L Without Covariates, which is -2 LOG L for a model with no explanatory variables) minus
28.727 (-2 LOG L With Covariates, which is -2 LOG L for a model with all explanatory variables) equals 12.8618
(Model Chi-Square, which is used to test the effects of the explanatory variables).

Next is the “Multinomial Logit Parameter Estimates” table. For each effect, it contains the maximum likelihood
parameter estimate, its estimated standard error (the square root of the corresponding diagonal element of the
estimated covariance matrix), the Wald Chi-Square statistic (the square of the parameter estimate divided by its
standard error), the degrees of freedom of the Wald Chi-Square statistic (1 unless the corresponding parameter is
redundant or infinite, in which case the value is 0), and the p-value of the Chi-Squared statistic with respect to a
chi-squared distribution with one degree of freedom. The parameter estimate with the smallest p-value is for soft
center. Since the parameter estimate is negative, chewy is the more preferred level. Dark is preferred over milk,
and nuts over no nuts, however only the p-value for Soft is less than 0.05.

Fitting the Multinomial Logit Model, All Levels
It is instructive to perform some manipulations on the data set and analyze it again. These steps will perform the
same analysis as before, only now coefficients for both levels of the three attributes are printed. Binary variables
for the missing levels are created by subtracting the existing binary variables from 1.

data chocs2;
set chocs;
Milk = 1 - dark; Chewy = 1 - Soft; NoNuts = 1 - nuts;
label dark = ’Dark Chocolate’ milk = ’Milk Chocolate’

soft = ’Soft Center’ chewy = ’Chewy Center’
nuts = ’With Nuts’ nonuts = ’No Nuts’;

run;

proc phreg data=chocs2;
strata subj set;
model c*c(2) = dark milk soft chewy nuts nonuts / ties=breslow;
run;

Choice of Chocolate Candies

The PHREG Procedure

Model Information

Data Set WORK.CHOCS2
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

81

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Subj Set Alternatives Alternatives Chosen

1 1 1 8 1 7
2 2 1 8 1 7
3 3 1 8 1 7
4 4 1 8 1 7
5 5 1 8 1 7
6 6 1 8 1 7
7 7 1 8 1 7
8 8 1 8 1 7
9 9 1 8 1 7

10 10 1 8 1 7

Total 80 10 70

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 41.589 28.727
AIC 41.589 34.727
SBC 41.589 35.635

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.8618 3 0.0049
Score 11.6000 3 0.0089
Wald 8.9275 3 0.0303

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Dark Chocolate 1 1.38629 0.79057 3.0749 0.0795
Milk Chocolate 0 0 . . .
Soft Center 1 -2.19722 1.05409 4.3450 0.0371
Chewy Center 0 0 . . .
With Nuts 1 0.84730 0.69007 1.5076 0.2195
No Nuts 0 0 . . .

Now the zero coefficients for the reference levels, milk, chewy, and no nuts are printed. So for example, the
part-worth utility for Milk Chocolate is a structural zero, and the part-worth utility for Dark Chocolate is larger at
1.38629. Similarly, the part-worth utility for Chewy Center is a structural zero, and the part-worth utility for Soft
Center is smaller at -2.19722. Finally, the part-worth utility for No Nuts is a structural zero, and the part-worth
utility for Nuts is larger at 0.84730.

82

Probability of Choice
The parameter estimates are used next to construct the estimated probability that each alternative will be chosen.
The DATA step program uses the following formula to create the choice probabilities.

p(cijC) =
exp(xi�)Pm
j=1 exp(xj�)

* Estimate the probability that each alternative will be chosen;

data p;
retain sum 0;
set combos end=eof;

* On the first pass through the DATA step (_n_ is the pass number),
get the regression coefficients in B1-B3. Note that they are
automatically retained so that they can be used in all passes
through the DATA step.;

if _n_ = 1 then
set betas(rename=(dark=b1 soft=b2 nuts=b3));

keep dark soft nuts p;
array x[3] dark soft nuts;
array b[3] b1-b3;

* For each combination, create x * b;
p = 0;
do j = 1 to 3;

p = p + x[j] * b[j];
end;

* Exponentiate x * b and sum them up;
p = exp(p);
sum = sum + p;

* Output sum exp(x * b) in the macro variable ’&sum’;
if eof then call symput(’sum’,put(sum,best12.));
run;

proc format;
value df 1 = ’Dark’ 0 = ’Milk’;
value sf 1 = ’Soft’ 0 = ’Chewy’;
value nf 1 = ’Nuts’ 0 = ’No Nuts’;
run;

* Divide each exp(x * b) by sum exp(x * b);
data p;

set p;
p = p / (&sum);
format dark df. soft sf. nuts nf.;
run;

proc sort;
by descending p;
run;

proc print;
run;

83

Choice of Chocolate Candies

Obs Dark Soft Nuts p

1 Dark Chewy Nuts 0.50400
2 Dark Chewy No Nuts 0.21600
3 Milk Chewy Nuts 0.12600
4 Dark Soft Nuts 0.05600
5 Milk Chewy No Nuts 0.05400
6 Dark Soft No Nuts 0.02400
7 Milk Soft Nuts 0.01400
8 Milk Soft No Nuts 0.00600

The three most preferred alternatives are Dark/Chewy/Nuts, Dark/Chewy/No Nuts, and Milk/Chewy/Nuts.

84

Fabric Softener Example
In this example, subjects are asked to choose among fabric softeners. This example shows all of the steps in a
discrete choice study, including experimental design creation, creating the questionnaire, inputting the raw data,
creating the data set for analysis, and fitting the discrete choice model. We assume the reader is familiar with
the experimental design issues discussed in Kuhfeld, Tobias, and Garratt (1994). Some of these concepts are
reviewed starting on page 68.

Set Up
The study involves four fictitious fabric softener brand names Sploosh, Plumbbob, Platter, and Moosey. � Each
choice set consists of each of these four brands and a constant alternative Another. Each of the brands is available
at three prices, $1.49, $1.99, and $2.49. Another is only offered at $1.99. There are 50 subjects, each of which
will see the same choice sets. We can use the %MKTRUNS autocall macro to help us choose the number of
choice sets. All of the autocall macros used in this report are documented starting on page 261. To use this
macro, you specify the number of levels for each of the factors. With four brands each with three prices, you
specify four 3’s.

title ’Choice of Fabric Softener’;

%mktruns(3 3 3 3)

The output tells us the size of the saturated design, which is the number of parameters in the linear design, and
suggests design sizes.

Choice of Fabric Softener

Some Reasonable
Design Sizes Cannot Be
(Saturated=9) Violations Divided By

9 0
18 0
27 0
36 0
45 0
54 0
63 0
72 0
81 0
90 0

The output from this macro tells us that the saturated design has nine runs. This is shown by the “(Saturated=9)”
in the listing. It also tells us that 9, 18, 27, ..., 90 are optimal design sizes with zero violations. There are zero
violations because all of these sizes can be divided by 3 and 3�3 = 9. In this problem, the %MKTRUNS macro
reports ten different sizes with no violations.y Ideally, we would like to have a manageable number of choice
sets for people to evaluate and a design that is both orthogonal and balanced. When violations are reported,
orthogonal and balanced designs are not possible. While orthogonality and balance are not required, they are
nice properties to have. With 4 three-level factors, the number of choice sets in all orthogonal and balanced
designs must be divisible by 3� 3 = 9.

Nine choice sets is a bit small. Furthermore, there are no error df. We set the number of choice sets to 18 since it
is small enough for each person to see all choice sets, large enough to have reasonable error df, and an orthogonal

�Of course real studies would use real brands. Since we have not collected real data, we cannot use real brand names.
yFor more realistic problems we will see violations. For example, for this problem, a sample size of 12 is considered, but it has 6

violations. Six times, the4(4 � 1)=2 = 6 pairs of the four threes, 12 cannot be divided by 3� 3 = 9.

85

and balanced design is available. It is important to remember however that the concept of number of parameters
and error df discussed here applies to the linear design and not to the choice design. We could use the nine-run
design for a discrete choice model and have error df in the choice model. If we were to instead use this design
for a full-profile conjoint (not recommended), there would be no error df.

To make the code easier to modify for future use, the number of choice sets and alternatives are stored in macro
variables and the prices in a format. Our design will have values for price of 1, 2, and 3. We use a format to map
these values to the actual prices $1.49, $1.99, and $2.49. The format also creates a price of $1.99 for missing,
which will be used for the constant alternative.

%let n = 18; /* n choice sets */
%let m = 5; /* m alternatives including constant */
%let mm1 = %eval(&m - 1); /* m - 1 */

proc format; /* create a format for the price */
value price 1 = ’$1.49’ 2 = ’$1.99’ 3 = ’$2.49’ . = ’$1.99’;
run;

Designing the Choice Experiment
In the next steps, an efficient experimental design is created. We will use an autocall macro %MKTDES to create
most of our designs. (All of the autocall macros used in this report are documented starting on page 261.) When
you invoke the %MKTDES macro for a simple problem, you only need to specify the factors, number of levels,
and number of runs. The macro does the rest. The macro has two primary steps: it first creates a candidate set
of potential choice sets using either PROC PLAN or PROC FACTEX, then it uses PROC OPTEX to construct
the design by selecting a good subset of the potential choice sets. PROC PLAN generates full-factorial candidate
sets, PROC FACTEX generates fractional-factorial candidate sets, and PROC OPTEX searches the candidate set
for an optimal design. The macro displays the code it generates so you can better understand what it is doing for
you. Here is the %MKTDES macro usage for this example:

%mktdes(factors=x1-x4=3, n=&n)

This example has four factors, x1 through x4 all with three levels. A design with 18 runs is requested. The
factors= option lists the factors followed by an equal sign and the number of levels. The n= option specifies
the number of runs. These are all the options that are needed for a simple problem such as this one. However,
throughout this report, random number seeds are explicitly specified with the seed= option so that you can
reproduce these results.� In practice, particularly for small problems such as this, specifying a seed is not
necessary. The procopts= option is used to specify options for the PROC OPTEX statement, in this case the
seed= option. Here is the macro usage with the random number seed specified:

%mktdes(factors=x1-x4=3, n=&n, procopts=seed=7654321)

proc print; run;

Here are the results.

�However, due to machine differences, some results may not be exactly reproducible on any particular machine, though at most the
differences should be slight.

86

Choice of Fabric Softener

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 100.0000 100.0000 100.0000 0.7071
2 100.0000 100.0000 100.0000 0.7071
3 100.0000 100.0000 100.0000 0.7071
4 100.0000 100.0000 100.0000 0.7071
5 100.0000 100.0000 100.0000 0.7071

Choice of Fabric Softener

Obs x1 x2 x3 x4

1 3 3 2 3
2 3 3 2 2
3 3 2 3 3
4 3 2 1 1
5 3 1 3 2
6 3 1 1 1
7 2 3 3 1
8 2 3 1 3
9 2 2 2 2

10 2 2 2 1
11 2 1 3 2
12 2 1 1 3
13 1 3 3 1
14 1 3 1 2
15 1 2 3 3
16 1 2 1 2
17 1 1 2 3
18 1 1 2 1

More will be said about these results starting on page 89. For now, notice that the macro found a perfect,
orthogonal and balanced, 100% efficient design consisting of 4 three-level factors, x1-x4. The levels are the
integers 1 to 3.

87

Examining the Design
It is good to run basic checks on all designs. The following statements use PROC SUMMARY and PROC
PRINT to display all one-way frequencies for all attributes, all two-way frequencies, and all n-way frequencies
(in this case four-way) frequencies. What we hope to see is equal or at least nearly equal one-way and two-way
frequencies, and we want to see that each combination occurs only once.

proc summary data=design;
class _all_;
ways 1 2 4;
output out=sum;
run;

proc print; by _type_; run;

Choice of Fabric Softener

----------------------------------- _TYPE_=1 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

1 . . . 1 6
2 . . . 2 6
3 . . . 3 6

----------------------------------- _TYPE_=2 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

4 . . 1 . 6
5 . . 2 . 6
6 . . 3 . 6

----------------------------------- _TYPE_=3 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

7 . . 1 1 2
8 . . 1 2 2
9 . . 1 3 2

10 . . 2 1 2
11 . . 2 2 2
12 . . 2 3 2
13 . . 3 1 2
14 . . 3 2 2
15 . . 3 3 2

----------------------------------- _TYPE_=4 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

16 . 1 . . 6
17 . 2 . . 6
18 . 3 . . 6

----------------------------------- _TYPE_=5 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

19 . 1 . 1 2
20 . 1 . 2 2
21 . 1 . 3 2
22 . 2 . 1 2
23 . 2 . 2 2
24 . 2 . 3 2
25 . 3 . 1 2
26 . 3 . 2 2
27 . 3 . 3 2

88

----------------------------------- _TYPE_=6 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

28 . 1 1 . 2
29 . 1 2 . 2
30 . 1 3 . 2
31 . 2 1 . 2
32 . 2 2 . 2
33 . 2 3 . 2
34 . 3 1 . 2
35 . 3 2 . 2
36 . 3 3 . 2

----------------------------------- _TYPE_=8 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

37 1 . . . 6
38 2 . . . 6
39 3 . . . 6

----------------------------------- _TYPE_=9 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

40 1 . . 1 2
41 1 . . 2 2
42 1 . . 3 2
43 2 . . 1 2
44 2 . . 2 2
45 2 . . 3 2
46 3 . . 1 2
47 3 . . 2 2
48 3 . . 3 2

---------------------------------- _TYPE_=10 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

49 1 . 1 . 2
50 1 . 2 . 2
51 1 . 3 . 2
52 2 . 1 . 2
53 2 . 2 . 2
54 2 . 3 . 2
55 3 . 1 . 2
56 3 . 2 . 2
57 3 . 3 . 2

---------------------------------- _TYPE_=12 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

58 1 1 . . 2
59 1 2 . . 2
60 1 3 . . 2
61 2 1 . . 2
62 2 2 . . 2
63 2 3 . . 2
64 3 1 . . 2
65 3 2 . . 2
66 3 3 . . 2

89

---------------------------------- _TYPE_=15 -----------------------------------

Obs x1 x2 x3 x4 _FREQ_

67 1 1 2 1 1
68 1 1 2 3 1
69 1 2 1 2 1
70 1 2 3 3 1
71 1 3 1 2 1
72 1 3 3 1 1
73 2 1 1 3 1
74 2 1 3 2 1
75 2 2 2 1 1
76 2 2 2 2 1
77 2 3 1 3 1
78 2 3 3 1 1
79 3 1 1 1 1
80 3 1 3 2 1
81 3 2 1 1 1
82 3 2 3 3 1
83 3 3 2 2 1
84 3 3 2 3 1

This design is perfect. However, there are other 100% efficient designs with duplicate observations that can be
produced with different seeds. The last part of the output, the n-way frequencies contains some 2’s for those
designs. Sometimes simply changing the seed results in a better design.

Understanding the %MKTDES Macro
For simple problems such as this, the macro can find an optimal design quite easily, but for more complicated
problems you may have to try more than one approach to find a good design. For this reason, it is important
to understand the steps the macro takes in creating an efficient design. To help you better understand what the
macro is doing, it shows you some of the code it generates. For this problem, the macro first uses PROC PLAN
to create a full-factorial design with 4 three-level factors (four brands each at three prices). Here is the PROC
PLAN step that the %MKTDES macro generated.

proc plan ordered;
factors

x1=3
x2=3
x3=3
x4=3
/ noprint;

output out=Cand1;
run; quit;

The factors statement specifies that x1 has 3 levels, x2 has 3 levels, x3 has 3 levels, and x4 has 3 levels.
The full-factorial design consists of all possible 3 � 3 � 3 � 3 = 81 combinations of the factor levels, the first
10 of which are shown. The ordered option specifies that the design is not to be randomized� the choice sets
are not sorted into a random order yet. The output statement outputs the design to a SAS data set, CAND1.

proc print data=Cand1(obs=10);
title2 ’The First 10 Observations of the Full-Factorial Design’;
run; quit;

Here are the first ten observations of the full-factorial design.

90

Choice of Fabric Softener
The First 10 Observations of the Full-Factorial Design

Obs x1 x2 x3 x4

1 1 1 1 1
2 1 1 1 2
3 1 1 1 3
4 1 1 2 1
5 1 1 2 2
6 1 1 2 3
7 1 1 3 1
8 1 1 3 2
9 1 1 3 3

10 1 2 1 1

Each row of this design is a potential choice set. The next step shows the first ten potential choice sets by applying
formats and labels.

proc print data=Cand1(obs=10) label;
title2 ’Ten Potential Choice Sets’;
format x1-x4 price.;
label x1 = ’Sploosh’ x2 = ’Plumbbob’ x3 = ’Platter’ x4 = ’Moosey’;
run; quit;

Choice of Fabric Softener
Ten Potential Choice Sets

Obs Sploosh Plumbbob Platter Moosey

1 $1.49 $1.49 $1.49 $1.49
2 $1.49 $1.49 $1.49 $1.99
3 $1.49 $1.49 $1.49 $2.49
4 $1.49 $1.49 $1.99 $1.49
5 $1.49 $1.49 $1.99 $1.99
6 $1.49 $1.49 $1.99 $2.49
7 $1.49 $1.49 $2.49 $1.49
8 $1.49 $1.49 $2.49 $1.99
9 $1.49 $1.49 $2.49 $2.49

10 $1.49 $1.99 $1.49 $1.49

So for example, the first potential choice set consists of the four brands, all at $1.49, and a constant alternative
which is not shown. The eighth choice set consists of Sploosh at $1.49, Plumbob at $1.49, Platter at $2.49,
Moosey at $1.99, and the constant alternative.

Eighty-one choice sets are too many to get reliable data, so a subset of the choice sets must be selected. The
full-factorial design is used as a candidate set of points from which the final design is chosen. The macro calls
PROC OPTEX to create an efficient design.� This specification asks for an efficient main-effects design for 4
three-level factors in 18 runs (18 choice sets). PROC OPTEX independently generates ten designs, each time
trying to optimize the D-efficiency criterion, which is a measure of design goodness. The best five designs are
kept, and the designs are then ordered from most to least efficient. The output statement outputs the most
efficient design to a SAS data set. Here is the PROC OPTEX step that the %MKTDES macro generated.

�See the section “Candidate Sets and How PROC OPTEX Works” on page 111, the vacation example on page 109, and subsequent
examples for more information on PROC OPTEX.

91

title ’Choice of Fabric Softener’;

proc optex data=Cand1 seed=7654321;
class x1-x4 / param=orthref;
model x1-x4;
generate n=18 iter=10 keep=5 method=m_federov;
output out=Design;
run; quit;

Here are the results.

Choice of Fabric Softener

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 100.0000 100.0000 100.0000 0.7071
2 100.0000 100.0000 100.0000 0.7071
3 100.0000 100.0000 100.0000 0.7071
4 100.0000 100.0000 100.0000 0.7071
5 100.0000 100.0000 100.0000 0.7071

In this (easy) case, PROC OPTEX has little trouble finding a design with perfect, 100% efficiency. Small ex-
amples such as this should run in at most a few seconds on most modern computers. In this example, the new
Version 8 option param=orthref was specified in the class statement with PROC OPTEX. This option
generates an orthogonal coding for the design matrix so that D-efficiency is scaled to range from 0 to 100. The
sometimes complicated strategies that were needed to get a 0 to 100 scale using previous releases of the SAS
System are no longer needed. PROC OPTEX options are explained in more detail starting on page 109.

Randomizing the Design, Postprocessing
It is a good idea to randomize the design, that is to present the choice sets in random order. We can use PROC
PLAN to generate the integers in the range 1 to 18 sorted into random order to sort the design. The DATA
step reads the ORDER data set, which contains the variable Set, and then uses point= to directly access
the appropriate observation from SASUSER.DES. For example, the first value of Set is 16, so the sixteenth
observation of SASUSER.DES is read first. Each observation of SASUSER.DES is read once in a random order.
Also in the next steps, the constant Another alternative is created and formats assigned.

proc plan seed=7654321; /* random order to sort design */
factors set=&n / noprint; /* integers, 1 - &n in random order */
output out=order; /* output to data set order */
run; quit;

data sasuser.des; /* create randomly sorted design */
set order; /* read order of observations */
set design point=set; /* sort into random order */
format x1-x&mm1 price.; /* assign formats, labels */
label x1 = ’Sploosh’ x2 = ’Plumbbob’ x3 = ’Platter’ x4 = ’Moosey’;
run;

This is the final design. Note that it is stored in a permanent SAS data set so that it will still be available after the
data are collected.

proc print data=sasuser.des label; /* print final design */
title2 ’Efficient Design’;
run;

92

Choice of Fabric Softener
Efficient Design

Obs Sploosh Plumbbob Platter Moosey

1 $1.49 $1.99 $1.49 $1.99
2 $1.99 $1.99 $1.99 $1.99
3 $1.99 $1.49 $1.49 $2.49
4 $1.99 $1.49 $2.49 $1.99
5 $1.49 $1.49 $1.99 $1.49
6 $2.49 $1.49 $2.49 $1.99
7 $1.49 $1.49 $1.99 $2.49
8 $2.49 $2.49 $1.99 $1.99
9 $1.49 $2.49 $2.49 $1.49

10 $2.49 $2.49 $1.99 $2.49
11 $1.99 $2.49 $1.49 $2.49
12 $2.49 $1.99 $2.49 $2.49
13 $2.49 $1.49 $1.49 $1.49
14 $1.49 $1.99 $2.49 $2.49
15 $2.49 $1.99 $1.49 $1.49
16 $1.99 $1.99 $1.99 $1.49
17 $1.99 $2.49 $2.49 $1.49
18 $1.49 $2.49 $1.49 $1.99

These previous steps could be simplified. Later, we will need to use PROC PLAN and the point= option in
more complicated examples, so we chose to illustrate them here in a simpler problem first. Here is a simpler
alternative to the previous two steps. Note that the final order for these two approaches are not the same, even
with the same seeds.

data temp; /* create randomly sorted design */
set design; /* read current design */
format x1-x&mm1 price.; /* assign formats, labels */
label x1 = ’Sploosh’ x2 = ’Plumbbob’ x3 = ’Platter’ x4 = ’Moosey’;
r = uniform(7654321); /* random variable to sort on */
run;

proc sort;
by r;
run;

Generating the Questionnaire
A questionnaire based on the design is printed using the DATA step. The statement array brands[&m]
$ -temporary- (’Sploosh’ ’Plumbbob’ ’Platter’ ’Moosey’ ’Another’) creates a con-
stant array so that brands[1] accesses the string ’Sploosh’, brands[2] accesses the string ’Plumb-
bob’, and so on. The -temporary- specification means that no output data set variables are created for
this array. The linesleft= specification in the file statement creates the variable ll, which contains the
number of lines left on a page. This ensures that each choice set is not split over two pages.

93

options ls=80 ps=60 nonumber nodate;
title;

data _null_; /* print questionnaire */
array brands[&m] $ _temporary_ (’Sploosh’ ’Plumbbob’ ’Platter’

’Moosey’ ’Another’);
array x[&m] x1-x&m;
file print linesleft=ll;
set sasuser.des;

x&m = 2; /* constant alternative */
format x&m price.;

if _n_ = 1 or ll < 12 then do;
put _page_;
put @60 ’Subject: _________’ //;
end;

put _n_ 2. ’) Circle your choice of ’
’one of the following fabric softeners:’ /;

do brnds = 1 to &m;
put ’ ’ brnds 1. ’) ’ brands[brnds] ’brand at ’

x[brnds] +(-1) ’.’ /;
end;

run;

In the interest of space, only the first two choice sets are printed. The questionnaire is printed, copied, and the
data are collected.

Subject: _________

1) Circle your choice of one of the following fabric softeners:

1) Sploosh brand at $1.49.

2) Plumbbob brand at $1.99.

3) Platter brand at $1.49.

4) Moosey brand at $1.99.

5) Another brand at $1.99.

2) Circle your choice of one of the following fabric softeners:

1) Sploosh brand at $1.99.

2) Plumbbob brand at $1.99.

3) Platter brand at $1.99.

4) Moosey brand at $1.99.

5) Another brand at $1.99.

94

Entering the Data
The data consist of a subject number followed by 18 integers in the range 1 to 5. These are the alternatives that
were chosen for each choice set. For example, the first subject chose alternative 3 (Platter brand at $1.49) in the
first choice set, alternative 3 (Platter brand at $1.99) in the second choice set, and so on. In the interest of space,
data from three subjects appear on one line.

data results; /* read choice data set */
input Subj (choose1-choose&n) (1.) @@;
datalines;

1 333542334333314443 2 333212344333333345 3 333212333333313333
4 133242144334414453 5 335242134333513443 6 333242234333314443
7 333432334332323443 8 333242234334414443 9 333432331352313343

10 325222235332333443 11 333232334333313343 12 333242234333313453
13 533212334332213443 14 142242144333213443 15 333222335333313345
16 333434235333315343 17 533242234352313443 18 343445534332414543
19 333342335332313443 20 333242234332315543 21 333252534333513443
22 333242354333313543 23 333242333333313443 24 525222234332223443
25 353342234333213343 26 333245545332313443 27 333352534333353343
28 333232334333333343 29 333422534335353443 30 333252334533313443
31 353342334332313443 32 353222234333334443 33 333222234352313345
34 332244134333313443 35 343552234353413445 36 333244534333313443
37 333244234334514443 38 353232334333353543 39 333252334333313543
40 343234134332413343 41 333444244432413443 42 333232234332314443
43 333242254333333443 44 333242234332313443 45 312252544432414443
46 132242235433514443 47 543242534332413443 48 335452334333323453
49 333542134334313443 50 333222334332314443
;

Processing the Data
Our next step is to prepare the experimental design for analysis. Our design, stored in the data set
SASUSER.DES, is stored with one row per choice set. While this is convenient for generating the question-
aire, it is not the right form for analysis. For analysis, we need a design with one row for each alternative of each
choice set. We will use the macro %MKTROLL to “roll out” the design into the proper form. First, we must
create a data set that describes how the design is to be processed. The next DATA step shows that we want a
design with two factors, Brand and Price. Brand has values “Sploosh”, “Plumbbob”, “Platter”, “Moosey”,
and “Another”. Price is created from x1 for Sploosh, x2 for Plumbbob, x3 for Platter, x4 for Moosey, and no
attribute for Another (the constant alternative). The variables Brand and Price are logically quite different.
Brand will be named on the alt= macro option as the alternative variable, so its values will literally come out
of the key= data set. Price will not be named on the alt= macro option, so its values start out as variable
names and (as we will see later) will end up as the values of those variables.

data key;
input Brand $ Price $;
datalines;

Sploosh x1
Plumbbob x2
Platter x3
Moosey x4
Another .
;

proc print; run;

95

Choice of Fabric Softener

Obs Brand Price

1 Sploosh x1
2 Plumbbob x2
3 Platter x3
4 Moosey x4
5 Another

Note that the value of Price for alternative Another is blank (character missing). The period in the in-stream
data set is simply a place holder used with list input to read both character and numeric missing data. A period is
not stored with the data. Next, we use the %MKTROLL macro to process the design.

%mktroll(design=sasuser.des, key=key, alt=brand, out=rolled)

This step processes the design=sasuser.des data set using the rules specified in the key=key data set,
naming the alt=brand variable as the alternative name variable, and creating an output SAS data set called
ROLLED. The input design=sasuser.des data set has 18 observations, one per choice set, and the output
out=rolled data set has 5� 18 = 90 observations, one for each alternative of each choice set. Here are the
first three observations of the original design matrix.

proc print data=sasuser.des(obs=3); run;

Choice of Fabric Softener

Obs x1 x2 x3 x4

1 $1.49 $1.99 $1.49 $1.99
2 $1.99 $1.99 $1.99 $1.99
3 $1.99 $1.49 $1.49 $2.49

These observations define the first three choice sets. Here are those same observations, arrayed for analysis.

proc print data=rolled(obs=15); format price price.; run;

Choice of Fabric Softener

Obs Set Brand Price

1 1 Sploosh $1.49
2 1 Plumbbob $1.99
3 1 Platter $1.49
4 1 Moosey $1.99
5 1 Another $1.99

6 2 Sploosh $1.99
7 2 Plumbbob $1.99
8 2 Platter $1.99
9 2 Moosey $1.99

10 2 Another $1.99

11 3 Sploosh $1.99
12 3 Plumbbob $1.49
13 3 Platter $1.49
14 3 Moosey $2.49
15 3 Another $1.99

This data set has a choice set variable Set, an alternative name variable Brand, and a price variable Price.

96

The prices come from the design, and the price for “Another” is a constant $1.99. The next step merges the
choice data with the choice design using the %MKTMERGE macro.

%mktmerge(design=rolled, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choose1-choose&n)

This step reads the design=rolled experimental design and the data=results data set and creates the
out=res2 output data set. The data are from an experiment with nsets=&n choice sets, nalts=&m alterna-
tives, with variables setvars=choose1-choose&n containing the numbers of the chosen alternatives. Here
are the first 15 observations.

proc print data=res2(obs=15); run;

Choice of Fabric Softener

Obs Subj Set Brand Price c

1 1 1 Sploosh 1 2
2 1 1 Plumbbob 2 2
3 1 1 Platter 1 1
4 1 1 Moosey 2 2
5 1 1 Another . 2

6 1 2 Sploosh 2 2
7 1 2 Plumbbob 2 2
8 1 2 Platter 2 1
9 1 2 Moosey 2 2
10 1 2 Another . 2

11 1 3 Sploosh 2 2
12 1 3 Plumbbob 1 2
13 1 3 Platter 1 1
14 1 3 Moosey 3 2
15 1 3 Another . 2

The data set contains the subject ID variable Subj from the data=results data set, the Set, Brand, and
Price variables from the design=rolled data set, and the variable c, which indicates which alternative
was chosen. The variable c indicates the chosen alternatives: 1 for first choice and 2 for second or subsequent
choice. This subject chose the third alternative, Platter, for each of the first three choice sets. This data set has
4500 observations: 50 subjects times 18 choice sets times 5 alternatives.

Since we did not specify a format, we see in the design the raw design values for Price: 1, 2, 3 and missing
for the constant alternative. If we were going to treat Price as a categorical variable for analysis, this would
be fine. We would simply assign our price format to Price and designate it as a class variable. However, in
this analysis we are going to treat price as quantitative and use the actual prices in the analysis. Hence, we must
convert our design values of 1, 2, 3, and . to 1.49, 1.99, 2.49, and 1.99. We cannot do this by simply assigning
a format. Formats create character strings that are printed in place of the original value. We need to convert a
numeric variable from one set of numbers to another. We could use if and assignment statements. However,
instead we will use the put function to write the value into a character string, then we read it back using a dollar
format and the input function. For example, the expression put(price, price.) converts a number, say
2, into a string (in this case ’$1.99’), then the input function reads the string and converts it to a numeric 1.99.
This step also assigns a label to the variable Price.

data res3; /* Create a numeric actual price */
set res2;
price = input(put(price, price.), dollar5.);
label price = ’Price’;
run;

97

Binary Coding
One more thing must be done to these data before they can be analyzed. A binary design matrix must be coded
for the brand effect. This can be done with PROC TRANSREG.

proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
model class(brand / zero=none order=data)

identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
id subj set c;
run;

The design option specifies that no model is fit; the procedure is just being used to code a design. When
design is specified, dependent variables are not required. The design option can optionally be followed by
“= n” where n is the number of observations to process at one time. By default, PROC TRANSREG codes all
observations in one big group. For very large data sets, this can consume large amounts of memory and time.
Processing blocks of smaller numbers of observations is more efficient. The option design=5000 processes
observations in blocks of 5000. For smaller computers, try something like design=1000. An alternative is to
code by subj, but this is less efficient because block size is so small.

The nozeroconstant and norestoremissing options are not necessary for this example but are included
here because sometimes they are very helpful in coding choice models. The nozeroconstant option specifies
that if a constant variable is created by the coding, it is not to be zeroed. The nozeroconstant option should
always be specified when you specify design=n because the last group of observations may be small and
may contain constant variables. The nozeroconstant option is also important when coding by subj set
because sometimes an attribute is constant within a choice set. The norestoremissing option specifies that
missing values should not be restored when the out= data set is created. By default, the coded class variable
contains a row of missing values for observations in which the class variable is missing. When you specify
the norestoremissing option, these observations contain a row of zeros instead. This option is useful when
there is a constant alternative indicated by missing values. Both of these options, like almost all options in PROC
TRANSREG, can be abbreviated to three characters (noz and nor).

The model statement names the variables to code and provides information about how they are to be coded. The
specification class(brand / zero=none order=data) specifies that the variable Brand is a classifica-
tion variable and requests a binary coding. The zero=none option specifies that one binary variable should be
created for all categories. The order=data option sorts the values into the order they were first encountered
in the data set. The specification identity(price) specifies that Price is a quantitative factor that should
be analyzed as is (not expanded into dummy variables).

The lprefix=0 option specifies that when labels are created for the binary variables, zero characters of the
original variable name should be used as a prefix. This means that the labels are created only from the level
values. So for example, “Sploosh” and “Plumbbob” are created as labels not “Brand Sploosh” and “Brand
Plumbbob”.

An output statement names the output data set and drops variables that are not needed. These variables do not
have to be dropped. However since they are variable names that are often found in special data set types, PROC
PHREG prints warnings when it finds them. Dropping the variables suppresses the warnings. Finally, the id
statement names the additional variables that we want copied from the input to the output data set. The next steps
print the first three coded choice sets.

proc print data=coded(obs=15) label;
title ’Choice of Fabric Softener’;
title2 ’First 15 Observations of Analysis Data Set’;
id subj set c;
run;

98

Choice of Fabric Softener
First 15 Observations of Analysis Data Set

Subj Set c Sploosh Plumbbob Platter Moosey Another Price Brand

1 1 2 1 0 0 0 0 1.49 Sploosh
1 1 2 0 1 0 0 0 1.99 Plumbbob
1 1 1 0 0 1 0 0 1.49 Platter
1 1 2 0 0 0 1 0 1.99 Moosey
1 1 2 0 0 0 0 1 1.99 Another

1 2 2 1 0 0 0 0 1.99 Sploosh
1 2 2 0 1 0 0 0 1.99 Plumbbob
1 2 1 0 0 1 0 0 1.99 Platter
1 2 2 0 0 0 1 0 1.99 Moosey
1 2 2 0 0 0 0 1 1.99 Another

1 3 2 1 0 0 0 0 1.99 Sploosh
1 3 2 0 1 0 0 0 1.49 Plumbbob
1 3 1 0 0 1 0 0 1.49 Platter
1 3 2 0 0 0 1 0 2.49 Moosey
1 3 2 0 0 0 0 1 1.99 Another

Fitting the Multinomial Logit Model
The next step fits the discrete choice, multinomial logit model.

proc phreg data=coded outest=betas;
title2 ’Discrete Choice Model’;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

As with the candy example, c*c(2) designates the chosen and unchosen alternatives in the model statement.
We specify the &-trgind macro variable for the model statement independent variable list. PROC TRANS-
REG automatically creates this macro variable. It contains the list of coded independent variables generated by
the procedure. This is so you do not have to figure out what names TRANSREG created and specify them. In
this case, PROC TRANSREG sets &-trgind to contain the following list.

BrandSploosh BrandPlumbbob BrandPlatter BrandMoosey BrandAnother Price

The ties=breslow option specifies a PROC PHREG model that has the same likelihood as the multinomial
logit model for discrete choice. The strata statement specifies that the combinations of Set and Subj indicate
the choice sets. This data set has 4500 observations consisting of 18� 50 = 900 strata and five observations per
stratum.

Each subject rated 18 choice sets, but the multinomial logit model assumes each stratum is independent. That
is, the multinomial logit model assumes each person makes only one choice. The option of collecting only one
datum from each subject is too expensive to consider for practical problems, so multiple choices are collected
for each subject. Then the repeated measures aspect of the problem is ignored. This practice is typical, and it
usually works well.

99

Multinomial Logit Model Results
The output is shown next. (Recall that we used %phchoice(on) on page 71 to customize the output from
PROC PHREG.)

Choice of Fabric Softener
Discrete Choice Model

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Subj Set Alternatives Alternatives Chosen

1 1 1 5 1 4
2 1 2 5 1 4
3 1 3 5 1 4
4 1 4 5 1 4
5 1 5 5 1 4
6 1 6 5 1 4
7 1 7 5 1 4
8 1 8 5 1 4
9 1 9 5 1 4

10 1 10 5 1 4
11 1 11 5 1 4
12 1 12 5 1 4
13 1 13 5 1 4
14 1 14 5 1 4
15 1 15 5 1 4
16 1 16 5 1 4
17 1 17 5 1 4
18 1 18 5 1 4
19 2 1 5 1 4
20 2 2 5 1 4
.
.
.

898 50 16 5 1 4
899 50 17 5 1 4
900 50 18 5 1 4

Total 4500 900 3600

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

100

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 2896.988 1445.310
AIC 2896.988 1455.310
SBC 2896.988 1479.322

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 1451.6781 5 <.0001
Score 1309.4957 5 <.0001
Wald 666.3325 5 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Sploosh 1 -1.22716 0.21083 33.8783 <.0001
Plumbbob 1 -0.25760 0.17245 2.2315 0.1352
Platter 1 1.97660 0.14592 183.4752 <.0001
Moosey 1 0.52028 0.16253 10.2467 0.0014
Another 0 0 . . .
Price 1 -4.50980 0.20231 496.8925 <.0001

The procedure output begins with information about each of the 900 strata. The first 20 and last three strata are
shown. Each subject and choice set combination consists of a total of five observations, one that was chosen (the
event) and four that are unchosen (censored). The nosummary option can be used to suppress this output, but
it is a good idea to not specify nosummary, since the summary information can help verify that the data are
arrayed correctly. We will see on page 129 how to print a compact summary of the summary table.

The most to least preferred brands are: Platter, Moosey, Another, Plumbbob, and Sploosh. Increases in
price have a negative utility. For example, the predicted utility of Platter brand at $1.99 is x i� which is
(0 0 1 0 0 $1:99) (�1:23 �0:26 1:98 0:52 0 �4:51)0 = 1:98 + 1:99 � �4:51 = �6:99.

Since Price was analyzed as a quantitative factor, we can see for example that the utility of Platter at $1.89,
which was not in any choice set, is 1:98 + 1:89��4:51 = �6:54, which is a $0:10� 4:51 = 0:45 increase in
utility.

101

Probability of Choice
These next steps compute the expected probability that each alternative is chosen within each choice set. This
code could easily be modified to compute expected market share for hypothetical marketplaces that do not di-
rectly correspond to the choice sets. Note however, that a term like “expected market share,” while widely used,
is a misnomer. Without purchase volume data, it is unlikely that these numbers would mirror true market share.
Nevertheless, choice modeling is a useful and popular marketing research technique.

First, PROC SCORE is used to compute the predicted utility for each alternative.

proc score data=coded(where=(subj=1) drop=c) score=betas type=parms out=p;
var &_trgind;
run;

The data set to be scored is named with the data= option, and the coefficients are specified in the option
score=beta. Note that we only need to read all of the choice sets once, since the parameter estimates were
computed in an aggregate analysis. This is why we specified where=(subj=1). We do not need x j �̂ for each
of the different subjects. We dropped the variable c from the CODED data set since this name will be used by
PROC SCORE for the results (xj�̂). The option type=parms specifies that the score= data set contains the
parameters in -TYPE- = ’PARMS’ observations. The output data set with the predicted utilities is named
P. Scoring is based on the coded variables from PROC TRANSREG, whose names are contained in the macro
variable &-trgind. The next step exponentiates xj �̂.

data p2;
set p;
p = exp(c);
run;

Next, exp(xj �̂) is summed for each choice set.

proc means data=p2 noprint;
output out=s sum(p) = sp;
by set;
run;

Finally, each xj �̂ is divided by
Pm

j=1 xj �̂.

data p;
merge p2 s(keep=set sp);
by set;
p = p / sp;
keep brand set price p;
run;

Here are the results for the first three choice sets.

proc print data=p(obs=15);
title2 ’Choice Probabilities for the First 3 Choice Sets’;
run;

Choice of Fabric Softener
Choice Probabilities for the First 3 Choice Sets

Obs Price Brand Set p

1 1.49 Sploosh 1 0.03723
2 1.99 Plumbbob 1 0.01030
3 1.49 Platter 1 0.91674
4 1.99 Moosey 1 0.02241
5 1.99 Another 1 0.01332

102

6 1.99 Sploosh 2 0.02673
7 1.99 Plumbbob 2 0.07048
8 1.99 Platter 2 0.65819
9 1.99 Moosey 2 0.15342

10 1.99 Another 2 0.09119

11 1.99 Sploosh 3 0.00377
12 1.49 Plumbbob 3 0.09489
13 1.49 Platter 3 0.88619
14 2.49 Moosey 3 0.00227
15 1.99 Another 3 0.01288

Custom Questionnaires
In this part of the example, a custom questionnaire is printed for each person. Previously, each subject saw the
same questionnaire, with the same choice sets, each containing the same alternatives, with everything in the same
order. In this example, the order of the choice sets and all alternatives within choice sets are randomized for each
subject. Randomizing avoids any systematic effects due to the order of the alternatives and choice sets. The
constant alternative is always printed last. If you have no interest in custom questionnaires, you can skip ahead
to page 107.

First, the macro variable &forms is created. It contains the number of separate questionnaires (or forms or
subjects). We can use PROC PLAN to create random orders for the choice sets and alternatives. The data set
created by PROC PLAN has 50 � 18 � 4 observations for 50 people, 18 choice sets, and 4 alternatives, not
counting the constant alternative. There are 18� 4 = 72 observations for subject 1, followed by 72 observations
for subject 2, ..., followed by 72 observations for subject 50. The Form variable is ordered due to the ordered
option in the factors statement. The 72 observations for each choice set contain 18 blocks of 4 observations
� one block per choice set in a random order and the 4 alternatives within each choice set, again in a random
order. The set= specification in the factors statement creates the random choice set order, and alt= creates
the random alternative order. Note that we store these in a permanent SAS data set so they will be available after
the data are collected.

%let forms = 50;
title ’Create 50 Custom Questionnaires’;

proc plan seed=7654321;
factors Form=&forms ordered Set=&n Alt=&mm1 / noprint;
output out=sasuser.orders;
run; quit;

proc print data=sasuser.orders(obs=16);
run;

The first 16 observations in this data set are shown next.

Create 50 Custom Questionnaires

Obs Form Set Alt

1 1 16 2
2 1 16 3
3 1 16 1
4 1 16 4

5 1 18 4
6 1 18 2
7 1 18 3
8 1 18 1

103

9 1 8 1
10 1 8 4
11 1 8 3
12 1 8 2

13 1 4 1
14 1 4 4
15 1 4 2
16 1 4 3

The data set is transposed, so the resulting data set contains 50 � 18 = 900 observations, one per subject per
choice set. The alternatives are in the variables Col1-Col4. The first 18 observations, which contain the
ordering of the choice sets for the first subject, are shown next.

proc transpose data=sasuser.orders out=sasuser.orders(drop=_name_);
by form notsorted set;
run;

proc print data=sasuser.orders(obs=18);
run;

Choice of Fabric Softener

Obs Form Set COL1 COL2 COL3 COL4

1 1 16 2 3 1 4
2 1 18 4 2 3 1
3 1 8 1 4 3 2
4 1 4 1 4 2 3
5 1 11 1 3 2 4
6 1 13 2 4 3 1
7 1 9 1 4 3 2
8 1 3 2 3 1 4
9 1 5 2 1 3 4

10 1 12 2 1 3 4
11 1 10 4 1 3 2
12 1 17 1 4 2 3
13 1 7 2 3 4 1
14 1 14 2 3 4 1
15 1 2 1 4 3 2
16 1 15 1 4 3 2
17 1 6 4 3 1 2
18 1 1 1 4 2 3

The following DATA step prints the 50 custom questionnaires.

options ls=80 ps=60 nodate nonumber;
title;

data _null_;
array brands[&mm1] $ _temporary_

(’Sploosh’ ’Plumbbob’ ’Platter’ ’Moosey’);
array x[&mm1] x1-x&mm1;
array c[&mm1] col1-col&mm1;
format x1-x&mm1 price.;
file print linesleft=ll;

104

do frms = 1 to &forms;
do choice = 1 to &n;

if choice = 1 or ll < 12 then do;
put _page_;
put @60 ’Subject: ’ frms //;
end;

put choice 2. ’) Circle your choice of ’
’one of the following fabric softeners:’ /;

set sasuser.orders;
set sasuser.des point=set;
do brnds = 1 to &mm1;

put ’ ’ brnds 1. ’) ’ brands[c[brnds]] ’brand at ’
x[c[brnds]] +(-1) ’.’ /;

end;
put ’ 5) Another brand at $1.99.’ /;
end;

end;
stop;
run;

The loop do frms = 1 to &forms creates the 50 questionnaires. The loop do choice = 1 to &n
creates the alternatives within each choice set. On the first choice set and when there is not enough room for
the next choice set, we skip to a new page (put -page-) and print the subject (forms) number. The data set
SASUSER.ORDERS is read and the Set variable is used to read the relevant observation from SASUSER.DES
using the point= option in the set statement. The order of the alternatives is in the c array and variables
col1-col&mm1 from the SASUSER.ORDERS data set. In the first observation of SASUSER.ORDERS,
Set=16, Col1=2, Col2=3, Col3=1, and Col4=4. The first brand, is c[brnds] = c[1] = col1 =
2, so brands[c[brnds]] = brands[c[1]] = brands[2] = ’Plumbob’, and the price, from
observation Set=16 of SASUSER.DES, is x[c[brnds]] = x[2] = $1.99. The second brand, is
c[brnds] = c[2] = col2 = 3, so brands[c[brnds]] = brands[c[2]] = brands[3] =
’Platter’, and the price, from observation Set=16 of SASUSER.DES, is x[c[brnds]] = x[3] =
$1.49.

In the interest of space, only the first two choice sets are printed. Note that the subject number is printed on the
form. This information is needed to restore all data to the original order.

Subject: 1

1) Circle your choice of one of the following fabric softeners:

1) Plumbbob brand at $1.99.

2) Platter brand at $1.99.

3) Sploosh brand at $1.99.

4) Moosey brand at $1.49.

5) Another brand at $1.99.

105

2) Circle your choice of one of the following fabric softeners:

1) Moosey brand at $1.99.

2) Plumbbob brand at $2.49.

3) Platter brand at $1.49.

4) Sploosh brand at $1.49.

5) Another brand at $1.99.

Processing the Data for Custom Questionnaires
Here are the data. (Actually, these are the data that would have been collected if the same people as in the
previous situation made the same choices, without error and uninfluenced by order effects.) Before these data
are analyzed, the original order must be restored.

data results; /* read choice data set */
input Subj (choose1-choose&n) (1.) @@;
datalines;

1 433523224332243244 2 111134542142124243 3 414223142333323422
4 143512112224441441 5 312513434513443233 6 444412234223112421
7 123131242243411222 8 134312124143421411 9 142244314432511242
10 124121151135114211 11 242144434121413233 12 351311124421241341
13 153244214412414433 14 422322441221123324 15 211452423534132431
16 213241243354321353 17 231424441351422145 18 123554323344445414
19 434224442513232132 20 244415443124532223 21 341521125414222253
22 521322422113145241 23 441314334433322221 24 434215341425341111
25 341242445212232234 26 453513242124211541 27 244434142234533535
28 324122444414142212 29 221313543351425441 30 535414424143141343
31 244414242334451134 32 233444112314125124 33 113434111124545334
34 442311112314222421 35 145141335453225333 36 233124413424242135
37 214441243452324333 38 133134341255222251 39 123513314411443544
40 441342414112143431 41 313242432133211112 42 111313111321411441
43 124232133234532322 44 124131332124112243 45 452231431542313121
46 131444324142443155 47 134133121134525123 48 353422425435444422
49 524243122341231233 50 132123343334312112

;

The data set is transposed, and the original order is restored.

proc transpose data=results /* create one obs per choice set */
out=res2(rename=(col1=choose) drop=_name_);

by subj;
run;

data res3(keep=subj set choose);
array c[&mm1] col1-col&mm1;
merge sasuser.orders res2;
if choose < 5 then choose = c[choose];
run;

proc sort;
by subj set;
run;

The actual choice number, stored in Choose, indexes the alternative numbers from SASUSER.ORDERS to
restore the original alternative orders. For example, for the first subject, the first choice was 2. The data set
SASUSER.ORDERS shows that this choice of 2 corresponds to the third alternative (the second Col variable,

106

Col2 = 3) of choice set Set=16. The listing shows that the original order has been restored. Similarly, the
second choice was 3. In the next observation of SASUSER.ORDERS, Col3=3 and Set=18, so the 18th choice
in the new data set is 3. The third choice was 3. In the next observation of SASUSER.ORDERS, Col3=3 and
Set=8, so the 8th choice in the new data set is 3. This process continues for the rest of the choices.

This DATA step writes out the data after the original order has been restored. It matches the data on page 94.

data _null_;
set res3;
by subj;
if first.subj then do;

if mod(subj, 3) eq 1 then put;
put subj 4. +1 @@;
end;

put choose 1. @@;
run;

1 333542334333314443 2 333212344333333345 3 333212333333313333
4 133242144334414453 5 335242134333513443 6 333242234333314443
7 333432334332323443 8 333242234334414443 9 333432331352313343

10 325222235332333443 11 333232334333313343 12 333242234333313453
13 533212334332213443 14 142242144333213443 15 333222335333313345
16 333434235333315343 17 533242234352313443 18 343445534332414543
19 333342335332313443 20 333242234332315543 21 333252534333513443
22 333242354333313543 23 333242333333313443 24 525222234332223443
25 353342234333213343 26 333245545332313443 27 333352534333353343
28 333232334333333343 29 333422534335353443 30 333252334533313443
31 353342334332313443 32 353222234333334443 33 333222234352313345
34 332244134333313443 35 343552234353413445 36 333244534333313443
37 333244234334514443 38 353232334333353543 39 333252334333313543
40 343234134332413343 41 333444244432413443 42 333232234332314443
43 333242254333333443 44 333242234332313443 45 312252544432414443
46 132242235433514443 47 543242534332413443 48 335452334333323453
49 333542134334313443 50 333222334332314443

The data can be combined with the design and analyzed as in the previous example.

107

Vacation Example, Big Designs
This example illustrates creating a design when the full-factorial is too large to use as a candidate set. A researcher
is interested in studying choice of vacation destinations. There are five destinations (alternatives) of interest:
Hawaii, Alaska, Mexico, California, and Maine. Each alternative is composed of three factors: package cost
($999, $1,249, $1,499), scenery (mountains, lake, beach), and accommodations (cabin, bed & breakfast, and
hotel). This problem requires a design with 15 three-level factors, denoted 3 15. The design has three factors, one
per attribute, for each of the five destinations. Each row of the design matrix contains the description of the five
alternatives in one choice set. Note that the levels do not have to be the same for all destinations. For example,
the cost for Hawaii and Alaska could be different from the other destinations. However for this example, each
destination will have the same attributes. Here are two summaries of the design, with factors grouped by attribute
and grouped by destination.

Factor Destination Attribute Levels
X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel

X6 Hawaii Scenery Mountains, Lake, Beach
X7 Alaska Scenery Mountains, Lake, Beach
X8 Mexico Scenery Mountains, Lake, Beach
X9 California Scenery Mountains, Lake, Beach
X10 Maine Scenery Mountains, Lake, Beach

X11 Hawaii Price $999, $1249, $1499
X12 Alaska Price $999, $1249, $1499
X13 Mexico Price $999, $1249, $1499
X14 California Price $999, $1249, $1499
X15 Maine Price $999, $1249, $1499

Factor Destination Attribute Levels
X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X6 Scenery Mountains, Lake, Beach
X11 Price $999, $1249, $1499

X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X7 Scenery Mountains, Lake, Beach
X12 Price $999, $1249, $1499

X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X8 Scenery Mountains, Lake, Beach
X13 Price $999, $1249, $1499

X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X9 Scenery Mountains, Lake, Beach
X14 Price $999, $1249, $1499

X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X10 Scenery Mountains, Lake, Beach
X15 Price $999, $1249, $1499

108

Set Up
We can use the %MKTRUNS autocall macro to suggest design sizes. (All of the autocall macros used in this
report are documented starting on page 261.) To use this macro, you specify the number of levels for each of the
factors. With 15 attributes each with three prices, you specify fifteen 3’s.

title ’Vacation Example, Strategies for Big Designs’;

%mktruns(3 3 3 3 3 3 3 3 3 3 3 3 3 3 3)

The output tells us the size of the saturated design, which is the number of parameters in the linear design, and
suggests design sizes.

Vacation Example, Strategies for Big Designs

Some Reasonable
Design Sizes Cannot Be
(Saturated=31) Violations Divided By

36 0
45 0
54 0
63 0
72 0
81 0
90 0
99 0

108 0
117 0

In this design, there are 15 � (3 � 1) + 1 = 31 parameters, so at least 31 choice sets must be created. With
all three-level factors, the number of choice sets in all orthogonal and balanced designs must be divisible by
3 � 3 = 9. Hence, any size of at least 36 choice sets and multiples of 9 choice sets can be optimal. Zero
violations does not imply that we will always find a 100% efficient design. It just means that optimality is not
precluded by unequal frequencies. We will create an efficient experimental design with 36 choice sets using the
%MKTDES macro.

Designing the Choice Experiment
The following code creates a design.

%mktdes(factors=x1-x15=3, n=36, procopts=seed=7654321)

The factors= option specifies a design with 15 factors, x1�x15, each with three levels. A design with 36
runs is requested, which will mean 36 choice sets. A random number seed is explicitly specified so we will be
able to reproduce these exact results.

In the soap example, the macro first ran PROC PLAN to create a full-factorial candidate set. That will not work
in this situation. The full-factorial design has 315 = 14; 348; 907 observations, which is way too many to use as
a candidate set. The full-factorial design will require over 1642 mega-bytes of disk. It is often the case that the
full-factorial design, even if it is small enough to create and store, is too big to use as a candidate set.

When is the candidate set too big? It depends on how fast your computer is, how much memory it has, how
much free disk space it has, how much time you have, and so on. Often, you will find your best designs with
small candidate sets. Here are some approximate guidelines. Under 2000 runs is small. 2000 � 5000, while not
small, may be very reasonable. 5000� 10,000 is big. Candidate sets with sizes closer to 5000 may work fine in a
reasonable amount of time, but as the candidate set gets bigger, the software has a harder time finding an optimal
design. You should only consider candidate sets with over 10,000 candidates when you have a lot of time to wait

109

for searches that will usually produce suboptimal designs. By default, the macro will not create a full-factorial
candidate set that is bigger than 2188 = max(211; 37) + 1 runs. This is controlled with the big= option.

We will often create a candidate set whose size is a power of a prime number.

212 = 4; 096 is reasonable although smaller sizes should be tried
213 = 8; 192 is probably too big
214 = 16; 384 is almost certainly too big
37 = 2; 187 is reasonable
38 = 6; 561 is probably too big
39 = 19; 683 is almost certainly too big
55 = 3; 125 is reasonable
56 = 15; 625 is almost certainly too big
74 = 2; 401 is reasonable
75 = 16; 807 is almost certainly too big

Returning to the example, the macro first runs PROC FACTEX to create a fractional-factorial design. It creates
a resolution III design for a candidate set. In a resolution III design, all main effects are estimable free from each
other. Resolution III designs are usually much smaller than the full-factorial. See pages 68 and 111 for more
detail about resolution. The macro writes PROC FACTEX code using an algorithm well-suited for much more
complicated problems such as models with interactions and a mix of levels. This flexibility makes the code more
complicated than is ideal for an introductory example, so first we will start more simply, and later we will look at
the actual macro-generated code (page 140 at the very end of this example). Let’s consider the PROC FACTEX
code that we might have written for the problem if we were solving the design problem without the use of the
%MKTDES macro.

proc factex;
factors x1-x15 / nlev=3;
size design=min;
model res=3;
output out=Cand1;
run; quit;

The factors statement names the factors, x1-x15, and nlev= specifies the (constant) number of levels for
each. The statements size design=min and model res=3 combine to create a resolution III design in the
minimum number of runs. The output statement with out= puts the design in a SAS data set named CAND1.
The resulting candidate set has 81 runs (possible choice sets). The only real difference between this code and
the macro generated code is the macro creates factors with values of (1, 2, 3), whereas in the code above and by
default, PROC FACTEX creates factors with values of (-1, 0, 1).

After the candidate set is generated, the macro runs PROC OPTEX to find the final design. Here is the PROC
OPTEX code that the macro generated.

proc optex data=Cand1 seed=7654321;
class x1-x15 / param=orthref;
model x1-x15;
generate n=36 iter=10 keep=5 method=m_federov;
output out=design;
run; quit;

The PROC statement option data= names the candidate data set, and the seed= option specifies the random
number seed. The class statement designates the variables x1 through x15 as classification variables, which
means they are nominal or categorical as opposed to linear or quantitative. The param=orthref option
generates an orthogonal coding for the design matrix. With this coding, the efficiency values range from 0
(some effects are not estimable) to 100 (a perfect design). The model statement specifies that we want to find
a good design for a main effects model (no interactions). The generate statement requests the generation
of an efficient design with n=36 choice sets. The options iter=10 and keep=5 request that ten designs be
independently generated and five be kept. The option method=m-federov specifies the modified Federov

110

algorithm (Federov (1972) and Cook and Nachtsheim (1980)), which is usually the most reliable. See page 111
for more information on the modified Federov algorithm. The output statement outputs the most efficient
design to the SAS data set DESIGN. Here are the results.

Vacation Example, Strategies for Big Designs

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 84.4436 65.6780 67.2558 1.1450
2 84.4436 65.6780 67.2558 1.1450
3 84.4436 65.6780 67.2558 1.1450
4 84.4436 65.6780 67.2558 1.1450
5 84.4436 65.6780 67.2558 1.1450

The best design had a D-Efficiency of 84.4%, and the macro ran in under two seconds. The macro ran fast
because the candidate set only had 81 candidates. When the candidate set is this small and run time is this fast,
it is usually good to try again with bigger candidate sets to see if more efficient designs can be found. Since the
factors all have three levels, larger candidate sets can be created by specifying a set size of the minimum (81)
times 3, 9, 27, 81, and so on. Of course the actual numbers, 243 and 729 and so on, could have been specified.

%mktdes(factors=x1-x15=3, size=81*3, n=36, procopts=seed=7654321)

With 81� 3 = 243 candidates, D-efficiency is better, 86.5650. PROCs FACTEX and OPTEX combined ran in
under four seconds. Let’s try again with a bigger candidate set.

%mktdes(factors=x1-x15=3, size=81*9, n=36, procopts=seed=7654321)

With 81� 9 = 729 candidates, D-efficiency is again better, 89.4777. PROCs FACTEX and OPTEX combined
ran in under twelve seconds. Let’s try again with a bigger candidate set.

%mktdes(factors=x1-x15=3, size=81*27, n=36, procopts=seed=7654321)

With 81�27 = 2187 candidates, D-efficiency is again better, 92.2205. PROCs FACTEX and OPTEX combined
ran in under 35 seconds. This candidate set is starting to get large, so this would be a reasonable stopping point.
Still, it would not hurt to try one more time.

%mktdes(factors=x1-x15=3, size=81*81, n=36, procopts=seed=7654321)

With 81 � 81 = 6561 candidates, D-efficiency was this time a little worse, 91.6423. PROCs FACTEX and
OPTEX combined ran in 2 minutes and 15 seconds. When the candidate set is large, PROC OPTEX has a harder
time finding the best designs.

111

Candidate Sets and How PROC OPTEX Works
On page 109, our goal was to find a good design in 36 runs from an 81 run candidate set. The number of
possible designs for this problem is 81!=(36!(81� 36)!) = 1:3 � 1023. Even if your computer could evaluate
one billion designs a second, it would take over four million years to evaluate all possible designs. Furthermore,
this is a small problem; researchers frequently have much larger designs and candidate sets. Exhaustive search is
impossible, so PROC OPTEX uses heuristics to look for good designs.

The details of how PROC OPTEX works vary by algorithm, but typically and the way we use it with the %MKT-
DES macro, it starts by randomly selecting a design from the candidate set. The efficiency of the random design
is evaluated. Then points that are in the design are considered for removal, and points that are not in the design
are considered for inclusion. The effects on efficiency of these removals and inclusions are evaluated. If swap-
ping a design point with a candidate point increases efficiency, it is done. This process continues until efficiency
quits improving. The result is one of the designs that is printed in the efficiency table. (By default, no report
is generated of the iterations that led to that design.) The process is repeated again starting with a new random
design and iteratively refining it. The result is another of the designs in the efficiency table. This process occurs n
times, from iter=n in the generate statement, which by default is 10. The designs are sorted by decreasing
efficiency, and the efficiency table is printed. The table is not an iteration history. It is a list of information about
n independently generated designs, ordered from best to worst. Because exhaustive searches are impossible,
PROC OPTEX may fail to find the optimal design. However, the procedure invariably finds efficient designs.

We will always use the modified Federov algorithm (Federov (1972) and Cook and Nachtsheim (1980)) with
PROC OPTEX when it is called from the %MKTDES macro. The modified Federov algorithm iteratively refines
a design by considering swapping each candidate point in place of each design point. Consider a candidate set
with n points and a design with m points. Each iteration of the modified Federov algorithm considers all pairs
of n � m swaps � each design point is removed and the effect of replacing it by each of the n candidates is
evaluated. Candidates are swapped in and design points swapped out whenever efficiency improves. The process
is repeated until n�m swaps are considered but nothing changes. The original Federov algorithm considers all
n �m possible swaps then performs the single swap that leads to the greatest improvement in efficiency. This
process is repeated until no swap increases efficiency. In contrast, the modified Federov algorithm performs every
swap that increases efficiency. Other algorithms are available, however we will not use them since the modified
Federov algorithm works so well.

As we saw on pages 109 through 110, sometimes you can find a more efficient design by using a larger candidate
set or by letting PROC OPTEX run longer. Starting on page 109 we used a resolution III candidate set (all main
effects are estimable free of each other). We started with small resolution III candidate sets and worked our
way up to larger sets. We could also try resolution IV candidate sets (all main effects are estimable free of each
other and free of all two-factor interactions, but some two-factor interactions are confounded with each other),
or resolution V candidate sets (all main effects and two-way interactions are estimable free of each other). Other
resolutions can be tried as well. The size of an orthogonal design is directly related to resolution. Specifying a
smaller resolution will create a candidate set with fewer choice sets, and a larger resolution will create a candidate
set with more choice sets. The size of the candidate set should be small relative to the full-factorial design but
larger than the final desired design.

Before the development of the %MKTDES macro, we recommended the following strategy.

� Try using a resolution III design as the candidate set.

� Try using a resolution IV design as the candidate set.

� Try using a resolution V design as the candidate set.

� Try using a resolution III design, concatenated with a resolution IV and resolution V design as the candidate
set.

� Try using a full-factorial design as the candidate set if it is not too big.

112

In fact the strategy outlined starting on page 109 seems to usually be superior. Page 109 suggests using the
macro with increasingly larger values of size=. The macro is faster, more convenient, and usually does a better
job than writing PROC FACTEX code with different resolutions. Still, it is good to know about and try other
strategies sometimes. Searching for an efficient experimental design is like a box of chocolates. You never know
what you’ll get.

The choice of the size of the candidate set involves balancing the richness of the candidate set versus the com-
putational difficulty of the search for an optimal design. Increasing the size of the candidate set gives PROC
OPTEX more combinations to work with and hence usually increases the efficiency of the best design that can
be constructed from the candidate set. However, as candidate set size increases, it becomes more difficult to find
the best designs. This is because as the number of possible designs increases, the probability that the search will
get stuck in a local optimum also increases. To compensate for this, more but slower searches may be necessary
with larger candidate sets.

To envision how PROC OPTEX works, imagine a bunch of blind-folded kangaroos hopping around, looking for
the top of Mt. Everest. The search for an efficient design is like a kangaroo jumping around until it reaches
a place where it can only go down. We want to find the top of Mt. Everest, but we would be happy with
K2, which is almost as high as Everest. We might also make do with other Himalayan peaks or even with Mt.
McKinley. However, local optima such as underwater mountain peaks and the highest point in Nebraska are
not good answers. Using a full-factorial design as a candidate set is like parachuting the kangaroos into random
places on the planet. Most will drown, freeze or meet some other unpleasant fate, but occasionally, a kangaroo
will find the top of a mountain. Since the kangaroos are being parachuted over the entire planet, some kangaroo
will find Mt. Everest, given enough kangaroos and enough time. However, it may take a very long time. Using
a minimum-sized resolution III candidate set is like parachuting kangaroos into some mountain range. They will
find a peak very quickly, but you do not know if it is Everest because you may have dropped them in the wrong
mountain range. Using increasingly larger candidate sets is like parachuting the kangaroos into increasingly
larger areas: a region, country, continent, hemisphere, and planet. As the size of the candidate set increases, the
chance that you will find the optimum or a very good local optimum increases, however each search takes longer
and has a lower probability of success, so more searches may be necessary.

Generating the Final Design
Let’s return to the 2187 run candidate set and ask PROC OPTEX to generate more than 10 designs, say
iter=50. This should take less than (50=10)� 35 seconds = 2 minutes and 35 seconds, about as much time
as we spent with 6561 candidates. Also, the seed was changed so that the same first ten designs as before would
not be generated. It is unlikely we will do a lot better with this strategy, but it is worth 2 1/2 minutes of computer
time to find out.

%mktdes(factors=x1-x15=3, size=81*27, n=36, iter=50,
procopts=seed=72555)

In fact it took about 2 minutes and 21 seconds and at D-efficiency = 91.3630 did a little worse than our previous
best. This is a good place to stop and regenerate our best design. There are many other strategies that could
be tried: specify bigger values for iter= before going to lunch or home for the evening, try concatenating the
different candidate sets, try creating candidate sets other ways. Our experience suggests that it is unlikely you
will do significantly better than we have already done using the simple strategy outlined here. It is instructive to
compare the PROC OPTEX D-efficiency results for the different candidate set sizes.

81 Candidates 243 Candidates 729 Candidates 2187 Candidates
D-Efficiency D-Efficiency D-Efficiency D-Efficiency

1 84.4436 86.5650 89.4777 92.2205
2 84.4436 86.5550 89.4575 91.4788
3 84.4436 86.2203 89.4471 90.9939
4 84.4436 86.2174 89.2366 90.7937
5 84.4436 86.1137 89.2189 90.7782

113

With 81 candidates, the top five designs all have the same D-efficiency. This suggests that PROC OPTEX has
probably found the best design that can be constructed from that candidate set. In contrast, as the candidate set
gets larger, the D-efficiency of the top five designs becomes more variable. In those cases we are less certain that
the optimal design that can be found in the candidates has been found. In particular, with the 2187 candidates,
it is quite likely that there are better designs out there. However, they are probably only a little better, and it
would probably take a long time to find them. Going from 81 candidates to 243, then 729, and 2187 is easy
and it does not take much computer or analyst time. Furthermore, there is a substantial gain in efficiency from
84.4% to 92.2%. It is unlikely that performing more searches or using larger candidate sets will help much. Our
experience suggests that the following points are good heuristics for design search.

� Keep candidate set sizes under 5000 runs.

� It is unlikely that more than 10 or 20 searches of a particular candidate set will be a lot better than just 10
or 20 searches.

Increasing the candidate set size or the number of searches can greatly increase search time, typically with a very
diminished return, that is, typically with little or no increase in the efficiency of the final design. See page 192
for an illustration of this.

Here are the results for our most efficient design.

%mktdes(factors=x1-x15=3, size=81*27, n=36, procopts=seed=7654321)

Vacation Example, Strategies for Big Designs

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 92.2205 85.3867 77.0109 1.0042
2 91.4788 83.8273 74.0857 1.0135
3 90.9939 82.8629 74.2882 1.0194
4 90.7937 81.8787 71.7165 1.0255
5 90.7782 82.0349 74.1813 1.0245

Examining the Design
Before you use a design, you should always look at its characteristics. First, let’s look at the one-way frequencies
� the number of times each level appears. Since we have all three-level factors and 36 choice sets, we would like
to see frequencies of all 12, though 11’s and 13’s will certainly be acceptable. We will also look at the n-way
frequencies to ensure that we do not have duplicate choice sets. We will use PROC SUMMARY with the ways
statement along with PROC PRINT to display the frequencies. In the interest of space, the two-way frequencies
are not printed, They could have been requested by adding “2” to the ways statement, ways 1 2 15.

proc summary data=design;
class _all_;
ways 1 15;
output out=sum;
run;

proc print; by _type_; run;

114

Vacation Example, Strategies for Big Designs

----------------------------------- _TYPE_=1 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

1 1 10
2 2 14
3 3 12

----------------------------------- _TYPE_=2 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

4 1 . 11
5 2 . 13
6 3 . 12

----------------------------------- _TYPE_=4 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

7 1 . . 14
8 2 . . 12
9 3 . . 10

----------------------------------- _TYPE_=8 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

10 1 . . . 12
11 2 . . . 11
12 3 . . . 13

---------------------------------- _TYPE_=16 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

13 1 11
14 2 11
15 3 14

---------------------------------- _TYPE_=32 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

16 1 13
17 2 9
18 3 14

---------------------------------- _TYPE_=64 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

19 1 12
20 2 12
21 3 12

---------------------------------- _TYPE_=128 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

22 1 12
23 2 13
24 3 11

---------------------------------- _TYPE_=256 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

25 1 12
26 2 14
27 3 10

115

---------------------------------- _TYPE_=512 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

28 1 12
29 2 11
30 3 13

--------------------------------- _TYPE_=1024 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

31 1 14
32 2 10
33 3 12

--------------------------------- _TYPE_=2048 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

34 . . . 1 11
35 . . . 2 13
36 . . . 3 12

--------------------------------- _TYPE_=4096 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

37 . . 1 12
38 . . 2 13
39 . . 3 11

--------------------------------- _TYPE_=8192 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

40 . 1 11
41 . 2 12
42 . 3 13

--------------------------------- _TYPE_=16384 ---------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

43 1 11
44 2 12
45 3 13

116

--------------------------------- _TYPE_=32767 ---------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 _FREQ_

46 1 1 2 3 1 3 2 1 1 1 1 1 1 1 1 1
47 1 1 2 3 2 3 2 3 3 3 3 3 3 3 3 1
48 1 1 2 3 3 2 3 2 2 2 2 2 2 2 2 1
49 1 2 1 1 1 1 1 3 3 3 2 2 2 1 1 1
50 1 2 1 1 2 1 1 2 2 2 1 1 1 3 3 1
51 1 2 1 2 1 2 1 1 1 1 3 3 3 2 2 1
52 1 2 2 1 3 1 3 1 1 1 3 3 3 2 2 1
53 1 3 1 2 3 2 2 3 3 3 1 1 1 2 2 1
54 1 3 3 2 1 3 2 2 2 2 3 3 3 1 1 1
55 1 3 3 2 2 3 2 1 1 1 2 2 2 3 3 1
56 1 3 3 3 1 3 3 3 3 3 1 1 1 2 2 1
57 2 1 2 1 1 2 2 3 2 1 3 2 1 3 2 1
58 2 1 3 1 2 2 1 2 1 3 2 1 3 2 1 1
59 2 1 3 1 3 2 1 1 3 2 1 3 2 1 3 1
60 2 1 3 3 3 1 1 3 2 1 3 2 1 3 2 1
61 2 2 1 2 3 3 2 2 1 3 1 3 2 3 2 1
62 2 2 2 2 2 3 3 1 3 2 3 2 1 2 1 1
63 2 2 2 2 3 3 3 3 2 1 2 1 3 1 3 1
64 2 2 2 3 1 1 1 2 1 3 1 3 2 3 2 1
65 2 3 1 3 1 1 2 1 3 2 2 1 3 3 2 1
66 2 3 1 3 1 2 3 2 1 3 3 2 1 1 3 1
67 2 3 1 3 2 1 2 3 2 1 1 3 2 2 1 1
68 2 3 2 2 3 1 2 2 1 3 3 2 1 1 3 1
69 3 1 1 1 1 3 2 2 3 1 2 3 1 2 3 1
70 3 1 1 2 2 1 3 1 2 3 1 2 3 1 2 1
71 3 1 1 2 3 1 3 3 1 2 3 1 2 3 1 1
72 3 1 3 2 1 1 1 2 3 1 2 3 1 2 3 1
73 3 2 1 3 3 3 1 1 2 3 3 1 2 2 3 1
74 3 2 3 1 1 1 2 1 2 3 3 1 2 2 3 1
75 3 2 3 3 2 2 2 3 1 2 2 3 1 1 2 1
76 3 2 3 3 3 2 2 2 3 1 1 2 3 3 1 1
77 3 3 2 1 1 3 1 3 1 2 1 2 3 2 3 1
78 3 3 2 1 3 3 1 1 2 3 2 3 1 3 1 1
79 3 3 2 2 1 2 3 1 2 3 2 3 1 3 1 1
80 3 3 2 2 2 2 1 2 3 1 3 1 2 1 2 1
81 3 3 3 1 2 3 3 2 3 1 3 1 2 1 2 1

We see a few 9’s, 10’s, and 14’s that we would rather not see, but overall, balance looks pretty good. The fol-
lowing program summarizes the two-way frequencies. PROC SUMMARY with the ways 2 statement generates
all two way frequencies and outputs them to a SAS data set. All frequencies are stored in the variable -freq- .
Rather than print all 15 � (15� 1)=2 = 105 tables, we summarize the frequencies with a PROC FREQ step.

proc summary noprint data=design;
ways 2;
class x:;
output out=res(keep=_freq_);
run;

proc freq; run;

Ideally, we would like all two-way frequencies to be 36=(3� 3) = 4, but we would certainly expect some threes
and fives. Here are the results.

The FREQ Procedure

Cumulative Cumulative
FREQ Frequency Percent Frequency Percent

2 7 0.74 7 0.74
3 278 29.42 285 30.16
4 400 42.33 685 72.49
5 229 24.23 914 96.72
6 30 3.17 944 99.89
7 1 0.11 945 100.00

117

The results look pretty good. (278+400+229)=954 or 96% of the frequencies are 3, 4, or 5. If the results were
not acceptable, you could run the macro again with different seeds until you found a design you liked better.
Some researchers are willing to even sacrifice a little bit of efficiency for better balance (see page 221).

You could also rerun the PROC OPTEX step, copying the generated code and adding an examine i statement,
to print the information matrix, which is the covariance matrix of the parameter estimates. You hope to see all of
the off-diagonal elements, the covariances, are small relative to the variances on the diagonal.

proc optex data=Cand1 seed=7654321;
class x1-x15 / param=orthref;
model x1-x15;
generate n=36 iter=10 keep=5 method=m_federov;
output out=design;
examine i;
run; quit;

Information Matrix

Intercept x11 x12 x21 x22 x31 x32 x41

Intercept 36.0 -2.1 -1.2 -2.1 -1.2 0.0 2.4 -2.1
x11 -2.1 34.5 0.9 -1.5 0.9 1.5 0.9 -1.5
x12 -1.2 0.9 37.5 0.9 1.5 0.9 4.5 -4.3
x21 -2.1 -1.5 0.9 34.5 0.9 -3.0 -1.7 3.0
x22 -1.2 0.9 1.5 0.9 37.5 3.5 0.0 3.5
x31 0.0 1.5 0.9 -3.0 3.5 36.0 -1.7 -3.0
x32 2.4 0.9 4.5 -1.7 0.0 -1.7 36.0 -1.7
x41 -2.1 -1.5 -4.3 3.0 3.5 -3.0 -1.7 34.5
x42 1.2 -0.9 -4.5 -3.5 -3.0 1.7 3.0 -0.9
x51 4.2 3.0 -1.7 -1.5 -4.3 1.5 0.9 3.0
x52 -2.4 1.7 -3.0 -0.9 -4.5 -0.9 -4.5 1.7
x61 0.0 -3.0 3.5 1.5 6.1 9.0 -1.7 1.5
x62 -2.4 -3.5 3.0 4.3 1.5 1.7 -3.0 -0.9
x71 0.0 -3.0 -1.7 1.5 6.1 0.0 -1.7 10.5
x72 4.9 1.7 3.0 -0.9 -1.5 1.7 -6.0 -0.9
x81 0.0 1.5 -4.3 -3.0 3.5 0.0 3.5 1.5
x82 2.4 -4.3 -1.5 -1.7 0.0 -1.7 -3.0 0.9
x91 0.0 1.5 6.1 -3.0 3.5 0.0 3.5 -3.0
x92 0.0 -2.6 1.5 -0.0 3.0 -0.0 6.0 -0.0
x101 2.1 0.0 -1.7 4.5 0.9 -6.0 -1.7 0.0
x102 -6.1 1.7 -0.0 4.3 1.5 -3.5 -3.0 1.7
x111 -2.1 3.0 3.5 -1.5 0.9 6.0 -1.7 -1.5
x112 -3.7 0.0 -3.0 2.6 -1.5 0.0 -3.0 2.6
x121 0.0 1.5 -4.3 -3.0 -1.7 4.5 -4.3 1.5
x122 -2.4 -0.9 4.5 1.7 -3.0 -0.9 1.5 -0.9
x131 4.2 -1.5 0.9 3.0 -6.9 -3.0 3.5 -1.5
x132 2.4 -4.3 -1.5 -1.7 -0.0 3.5 -3.0 0.9
x141 -2.1 -1.5 0.9 -1.5 -4.3 -3.0 -1.7 -1.5
x142 1.2 4.3 -4.5 -0.9 1.5 1.7 -3.0 4.3
x151 -4.2 0.0 -1.7 -0.0 -1.7 -1.5 0.9 0.0
x152 2.4 3.5 3.0 -1.7 -0.0 0.9 1.5 -6.9

118

Information Matrix

x42 x51 x52 x61 x62 x71 x72 x81

Intercept 1.2 4.2 -2.4 0.0 -2.4 0.0 4.9 0.0
x11 -0.9 3.0 1.7 -3.0 -3.5 -3.0 1.7 1.5
x12 -4.5 -1.7 -3.0 3.5 3.0 -1.7 3.0 -4.3
x21 -3.5 -1.5 -0.9 1.5 4.3 1.5 -0.9 -3.0
x22 -3.0 -4.3 -4.5 6.1 1.5 6.1 -1.5 3.5
x31 1.7 1.5 -0.9 9.0 1.7 0.0 1.7 0.0
x32 3.0 0.9 -4.5 -1.7 -3.0 -1.7 -6.0 3.5
x41 -0.9 3.0 1.7 1.5 -0.9 10.5 -0.9 1.5
x42 37.5 -3.5 -0.0 -0.9 -1.5 -0.9 -4.5 4.3
x51 -3.5 39.0 1.7 1.5 -0.9 1.5 4.3 1.5
x52 -0.0 1.7 33.0 -0.9 -1.5 -0.9 1.5 -0.9
x61 -0.9 1.5 -0.9 36.0 1.7 4.5 -0.9 0.0
x62 -1.5 -0.9 -1.5 1.7 36.0 4.3 -1.5 -3.5
x71 -0.9 1.5 -0.9 4.5 4.3 36.0 -3.5 -0.0
x72 -4.5 4.3 1.5 -0.9 -1.5 -3.5 36.0 -3.5
x81 4.3 1.5 -0.9 0.0 -3.5 -0.0 -3.5 36.0
x82 4.5 0.9 1.5 -1.7 3.0 3.5 0.0 -1.7
x91 1.7 1.5 -0.9 0.0 1.7 0.0 1.7 0.0
x92 0.0 -2.6 -4.5 5.2 0.0 -0.0 -3.0 5.2
x101 1.7 0.0 1.7 -1.5 -0.9 -1.5 4.3 -1.5
x102 0.0 -3.5 3.0 -0.9 1.5 -0.9 -1.5 -0.9
x111 -6.1 -1.5 -0.9 1.5 -0.9 1.5 4.3 -3.0
x112 -1.5 2.6 1.5 -2.6 1.5 2.6 1.5 0.0
x121 -0.9 -3.0 1.7 0.0 -3.5 0.0 -3.5 0.0
x122 -1.5 -3.5 -0.0 1.7 3.0 -3.5 -6.0 -3.5
x131 -0.9 7.5 -0.9 -3.0 1.7 -3.0 1.7 -3.0
x132 -1.5 -4.3 -1.5 3.5 0.0 3.5 0.0 -1.7
x141 4.3 -1.5 4.3 -3.0 1.7 -3.0 -3.5 -3.0
x142 1.5 4.3 1.5 -3.5 0.0 1.7 -6.0 1.7
x151 1.7 0.0 1.7 -1.5 -0.9 -1.5 -0.9 3.0
x152 -3.0 -1.7 -0.0 0.9 10.5 -4.3 -4.5 -1.7

Information Matrix

x82 x91 x92 x101 x102 x111 x112 x121

Intercept 2.4 0.0 0.0 2.1 -6.1 -2.1 -3.7 0.0
x11 -4.3 1.5 -2.6 0.0 1.7 3.0 0.0 1.5
x12 -1.5 6.1 1.5 -1.7 -0.0 3.5 -3.0 -4.3
x21 -1.7 -3.0 -0.0 4.5 4.3 -1.5 2.6 -3.0
x22 0.0 3.5 3.0 0.9 1.5 0.9 -1.5 -1.7
x31 -1.7 0.0 -0.0 -6.0 -3.5 6.0 0.0 4.5
x32 -3.0 3.5 6.0 -1.7 -3.0 -1.7 -3.0 -4.3
x41 0.9 -3.0 -0.0 0.0 1.7 -1.5 2.6 1.5
x42 4.5 1.7 0.0 1.7 0.0 -6.1 -1.5 -0.9
x51 0.9 1.5 -2.6 0.0 -3.5 -1.5 2.6 -3.0
x52 1.5 -0.9 -4.5 1.7 3.0 -0.9 1.5 1.7
x61 -1.7 0.0 5.2 -1.5 -0.9 1.5 -2.6 0.0
x62 3.0 1.7 0.0 -0.9 1.5 -0.9 1.5 -3.5
x71 3.5 0.0 -0.0 -1.5 -0.9 1.5 2.6 0.0
x72 0.0 1.7 -3.0 4.3 -1.5 4.3 1.5 -3.5
x81 -1.7 0.0 5.2 -1.5 -0.9 -3.0 0.0 0.0
x82 36.0 3.5 -3.0 0.9 -1.5 -1.7 0.0 -1.7
x91 3.5 36.0 0.0 -1.5 -0.9 1.5 -2.6 -4.5
x92 -3.0 0.0 36.0 -2.6 -1.5 -2.6 -1.5 -2.6
x101 0.9 -1.5 -2.6 37.5 4.3 -4.5 -2.6 -1.5
x102 -1.5 -0.9 -1.5 4.3 34.5 -0.9 1.5 -0.9
x111 -1.7 1.5 -2.6 -4.5 -0.9 34.5 2.6 1.5
x112 0.0 -2.6 -1.5 -2.6 1.5 2.6 37.5 -2.6
x121 -1.7 -4.5 -2.6 -1.5 -0.9 1.5 -2.6 36.0
x122 -3.0 -0.9 1.5 -0.9 1.5 -0.9 -4.5 1.7
x131 -1.7 -3.0 0.0 0.0 -3.5 -1.5 2.6 -3.0
x132 3.0 -1.7 0.0 -1.7 -3.0 0.9 -1.5 3.5
x141 3.5 1.5 -2.6 0.0 1.7 -1.5 -2.6 1.5
x142 0.0 -0.9 -4.5 1.7 -0.0 -0.9 -1.5 4.3
x151 -1.7 -1.5 2.6 -3.0 1.7 0.0 5.2 -1.5
x152 -3.0 0.9 -1.5 3.5 0.0 3.5 -3.0 0.9

119

Information Matrix

x122 x131 x132 x141 x142 x151 x152

Intercept -2.4 4.2 2.4 -2.1 1.2 -4.2 2.4
x11 -0.9 -1.5 -4.3 -1.5 4.3 0.0 3.5
x12 4.5 0.9 -1.5 0.9 -4.5 -1.7 3.0
x21 1.7 3.0 -1.7 -1.5 -0.9 -0.0 -1.7
x22 -3.0 -6.9 -0.0 -4.3 1.5 -1.7 -0.0
x31 -0.9 -3.0 3.5 -3.0 1.7 -1.5 0.9
x32 1.5 3.5 -3.0 -1.7 -3.0 0.9 1.5
x41 -0.9 -1.5 0.9 -1.5 4.3 0.0 -6.9
x42 -1.5 -0.9 -1.5 4.3 1.5 1.7 -3.0
x51 -3.5 7.5 -4.3 -1.5 4.3 0.0 -1.7
x52 -0.0 -0.9 -1.5 4.3 1.5 1.7 -0.0
x61 1.7 -3.0 3.5 -3.0 -3.5 -1.5 0.9
x62 3.0 1.7 0.0 1.7 0.0 -0.9 10.5
x71 -3.5 -3.0 3.5 -3.0 1.7 -1.5 -4.3
x72 -6.0 1.7 0.0 -3.5 -6.0 -0.9 -4.5
x81 -3.5 -3.0 -1.7 -3.0 1.7 3.0 -1.7
x82 -3.0 -1.7 3.0 3.5 0.0 -1.7 -3.0
x91 -0.9 -3.0 -1.7 1.5 -0.9 -1.5 0.9
x92 1.5 0.0 0.0 -2.6 -4.5 2.6 -1.5
x101 -0.9 0.0 -1.7 0.0 1.7 -3.0 3.5
x102 1.5 -3.5 -3.0 1.7 -0.0 1.7 0.0
x111 -0.9 -1.5 0.9 -1.5 -0.9 0.0 3.5
x112 -4.5 2.6 -1.5 -2.6 -1.5 5.2 -3.0
x121 1.7 -3.0 3.5 1.5 4.3 -1.5 0.9
x122 36.0 1.7 0.0 4.3 -1.5 -0.9 -1.5
x131 1.7 39.0 -1.7 -1.5 -0.9 0.0 -1.7
x132 0.0 -1.7 33.0 0.9 -1.5 -1.7 -0.0
x141 4.3 -1.5 0.9 34.5 -0.9 0.0 -1.7
x142 -1.5 -0.9 -1.5 -0.9 37.5 -3.5 -3.0
x151 -0.9 0.0 -1.7 0.0 -3.5 33.0 -1.7
x152 -1.5 -1.7 -0.0 -1.7 -3.0 -1.7 39.0

This design looks reasonable.

Blocking and Randomizing the Design
Thirty-six choice sets may be too many for one person to rate. Hence, before the design is used, it should be
blocked. We can create two blocks of size 18 so no person has to make more than 18 choices. The following code
does the blocking and outputs the results to a SAS data set BLOCKDES. The goal is to take the observations in
an existing design and optimally sort them into blocks. No swapping between the candidate set and the design
is performed. The generate statement options initdesign=design method=sequential name the
design to block, DESIGN, and the sequential method since no swapping in or out is performed. The blocks
statement option structure=(2)18 asks for 2 blocks of size 18, init=chain specifies no swapping from
the candidate set during the initialization, and noexchange specifies no swapping from the candidate set during
the iterations.

proc optex data=design seed=72343;
title3 ’Blocking an Existing Design’;
class x1-x15 / param=orthref;
model x1-x15;
generate initdesign=design method=sequential;
blocks structure=(2)18 init=chain noexchange iter=1;
output out=blockdes;
run; quit;

proc freq data=blockdes;
tables block * (x:);
run;

The PROC FREQ step prints all of the one-way frequencies within blocks. In the interest of space, they are not
shown here. However, they should be examined to ensure that each level is well represented in each block.

Before the design is used, the order of the choice sets should be randomized within blocks.

120

%let m = 6; /* m alternatives including constant */
%let mm1 = %eval(&m - 1); /* m - 1 */
%let n = 18; /* number of choice sets */
%let blocks = 2; /* number of blocks */

proc plan seed=7654321;
factors block=&blocks ordered set=&n / noprint;
output out=orders;
run; quit;

data sasuser.blockdes;
set orders;
set = (block - 1) * &n + set;
set blockdes point=set;
run;

We can use PROC PLAN to create a data set with a variable Block with &blocks=2 values, the integers 1
through 2. Within each block, the integers 1 through 18 are generated in a random order. These orders are read
in a DATA step and used to read the BLOCKDES data set in the random order within blocks. The point=
specification specifies that the variable Set contains the order in which to read the observations. The assignment
statement set = (block - 1) * 18 + setworks as follows. The (block - 1) * 18 produces the
observation number before the start of each block, 0 or 18. With the addition of Set, which contains the random
choice set order within each block, we get the observation numbers within each set. Note that the final design is
stored in a permanent SAS data set, SASUSER.BLOCKDES, so it will still exist after the data are collected.

Generating the Questionnaire
This next DATA step prints the questionnaires. They are then copied and the data are collected.

title;
options ls=80 ps=60 nodate nonumber;

data _null_;
array dests[&mm1] $ 10 _temporary_

(’Hawaii’ ’Alaska’ ’Mexico’ ’California’ ’Maine’);
array prices[3] $ 5 _temporary_ (’$999’ ’$1249’ ’$1499’);
array scenes[3] $ 13 _temporary_

(’the Mountains’ ’a Lake’ ’the Beach’);
array lodging[3] $ 15 _temporary_

(’Cabin’ ’Bed & Breakfast’ ’Hotel’);
array x[15];
file print linesleft=ll;

set sasuser.blockdes;
by block;

if first.block then do;
choice = 0;
put _page_;
put @50 ’Form: ’ block ’ Subject: ________’ //;
end;

choice + 1;

121

if ll < 19 then put _page_;
put choice 2. ’) Circle your choice of ’

’vacation destinations:’ /;
do dest = 1 to &mm1;

put ’ ’ dest 1. ’) ’ dests[dest]
+(-1) ’, staying in a ’ lodging[x[dest]]
’near ’ scenes[x[&mm1 + dest]] +(-1) ’,’ /
’ with a package cost of ’

prices[x[2 * &mm1 + dest]] +(-1) ’.’ /;
end;

put " &m) Stay at home this year." /;
run;

In this design there are five destinations, and each destination has three generic attributes. Each destination name
is accessed from the array dests. Note that destination is not a factor in the design; it is a “bin” into which
the attributes are grouped. The factors in the design are named in the statement array x[15], which is a
short-hand notation for array x[15] x1-x15. The first five factors are used for the lodging attribute of the
five destinations. The actual descriptions of lodging are accessed by lodging[x[dest]]. The variable Dest
varies from 1 to 5 destinations, so x[dest] extracts the levels for the Dest destination. Similarly for scenery,
scenes[x[&mm1 + dest]] extracts the descriptions of the scenery. The index &mm1 + dest accesses
factors 6 through 10, and x[&mm1 + dest] indexes the scenes array. For prices, prices[x[2 * &mm1
+ dest]], the index 2 * &mm1 + dest accesses the factors 11 through 15. Here are the first two choice
sets.

Form: 1 Subject: ________

1) Circle your choice of vacation destinations:

1) Hawaii, staying in a Hotel near a Lake,
with a package cost of $1249.

2) Alaska, staying in a Bed & Breakfast near a Lake,
with a package cost of $1499.

3) Mexico, staying in a Hotel near the Beach,
with a package cost of $999.

4) California, staying in a Hotel near the Mountains,
with a package cost of $999.

5) Maine, staying in a Bed & Breakfast near a Lake,
with a package cost of $1249.

6) Stay at home this year.

122

2) Circle your choice of vacation destinations:

1) Hawaii, staying in a Hotel near the Beach,
with a package cost of $1499.

2) Alaska, staying in a Bed & Breakfast near the Mountains,
with a package cost of $999.

3) Mexico, staying in a Cabin near the Mountains,
with a package cost of $1249.

4) California, staying in a Hotel near a Lake,
with a package cost of $1249.

5) Maine, staying in a Hotel near the Beach,
with a package cost of $1499.

6) Stay at home this year.

Entering and Processing the Data
Here are some of the input data. Data from a total of 200 subjects were collected, 100 per form.

title ’Vacation Example, Strategies for Big Designs’;

data results;
input Subj Form (choose1-choose&n) (1.) @@;
datalines;

1 1 321512533111543443 2 2 435421113312413133 3 1 331311531112543413
4 2 431131321114411133 5 1 341111531113143443 6 2 141341213312111133
7 1 341513531312145414 8 2 434111213344453114 9 1 341514131113145424

10 2 444313233322411113 11 1 321511131143123443 12 2 435151213413311134
13 1 321512531112135443 14 2 433111213342113133 15 1 141211111113143414
16 2 545433233323451133 17 1 344511533114145443 18 2 543431223321451115
19 1 325511131115143413 20 2 435431233112413133 21 1 131311531113145443
.
.
.
;

These next steps prepare the design for analysis. First, we create a data set KEY that describes how the factors
in our design will be used for analysis.

data key;
input Place $ 1-10 (Lodge Scene Price) ($);
datalines;

Hawaii x1 x6 x11
Alaska x2 x7 x12
Mexico x3 x8 x13
California x4 x9 x14
Maine x5 x10 x15
Home . . .
;

%mktroll(design=sasuser.blockdes, key=key, alt=place, out=rolled)

For analysis, the design will have four factors as shown by the variables in the data set KEY. Place is the alter-
native name; its values are directly read from the KEY in-stream data. Lodge is an attribute whose values will
be constructed from the SASUSER.BLOCKDES data set. Lodge is created from x1 for Hawaii, x2 for Alaska,

123

..., x5 for Maine, and no attribute for Home. Similarly, Scene is created from x6-x10, and Price is created
from x11-x15. The macro %MKTROLL is used to create the data set ROLLED from SASUSER.BLOCKDES
using the mapping in KEY and using the variable Place as the alternative ID variable. The macro warns us:

WARNING: The variable BLOCK is in the DESIGN= data set but not the
KEY= data set.

While this message could indicate a problem, in this case it does not. The variable Block in the de-
sign=sasuser.blockdes data set will not appear in the final design. The purpose of the variable Block
(sorting the design into blocks) has already been achieved. These next steps show the results for the first two
choice sets. The data set is converted from a design matrix with one row per choice set to a design matrix with
one row per alternative per choice set.

proc print data=sasuser.blockdes(obs=2); run;

proc print data=rolled(obs=12); run;

Vacation Example, Strategies for Big Designs

Obs block x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

1 1 3 2 3 3 2 2 2 3 1 2 2 3 1 1 2
2 1 3 2 1 3 3 3 1 1 2 3 3 1 2 2 3

Vacation Example, Strategies for Big Designs

Obs Set Place Lodge Scene Price

1 1 Hawaii 3 2 2
2 1 Alaska 2 2 3
3 1 Mexico 3 3 1
4 1 California 3 1 1
5 1 Maine 2 2 2
6 1 Home . . .

7 2 Hawaii 3 3 3
8 2 Alaska 2 1 1
9 2 Mexico 1 1 2

10 2 California 3 2 2
11 2 Maine 3 3 3
12 2 Home . . .

The next steps assign formats, convert the variable Price to contain actual prices, and recode the constant
alternative.

proc format;
value price 1 = ’ 999’ 2 = ’1249’ 3 = ’1499’ 0 = ’ 0’;
value scene 1 = ’Mountains’ 2 = ’Lake’ 3 = ’Beach’ 0 = ’Home’;
value lodge 1 = ’Cabin’ 2 = ’Bed & Breakfast’ 3 = ’Hotel’ 0 = ’Home’;
run;

data rolled2;
set rolled;
if place = ’Home’ then do; lodge = 0; scene = 0; price = 0; end;
price = input(put(price, price.), 5.);
format scene scene. lodge lodge.;
run;

proc print data=rolled2(obs=12); run;

124

Vacation Example, Strategies for Big Designs

Obs Set Place Lodge Scene Price

1 1 Hawaii Hotel Lake 1249
2 1 Alaska Bed & Breakfast Lake 1499
3 1 Mexico Hotel Beach 999
4 1 California Hotel Mountains 999
5 1 Maine Bed & Breakfast Lake 1249
6 1 Home Home Home 0

7 2 Hawaii Hotel Beach 1499
8 2 Alaska Bed & Breakfast Mountains 999
9 2 Mexico Cabin Mountains 1249

10 2 California Hotel Lake 1249
11 2 Maine Hotel Beach 1499
12 2 Home Home Home 0

It is not necessary to recode the missing values for the constant alternative. In practice, we usually will not do
this step. However, for this first analysis, we will want all nonmissing values of the attributes so we can see all
levels in the final printed output. We also recode Price so that for a later analysis, we can analyze Price as
a quantitative effect. For example, the expression put(price, price.) converts a number, say 2, into a
string (in this case ’1249’), then the input function reads the string and converts it to a numeric 1249. Next we
use the macro %MKTMERGE to combine the data and design and create the variable c, indicating whether each
alternative was a first choice or a subsequent choice.

%mktmerge(design=rolled2, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choose1-choose&n)

proc print data=res2(obs=12); run;

This macro takes the design=rolled2 experimental design, merges it with the data=result data set,
creating the out=res2 output data set. The RESULTS data set contains the variable Form that contains the
block number. Since there are two blocks, this variable must have values of 1 and 2. This variable must be
specified in the blocks= option. The experiment has nsets=&n choice sets, nalts=6 alternatives, and the
variables setvars=choose1-choose&n contain the numbers of the chosen alternatives. The output data
set RES2 has 21600 observations (200 subjects who each saw 18 choice sets with 6 alternatives). Here are the
first two choice sets.

Vacation Example, Strategies for Big Designs

Obs Subj Form Set Place Lodge Scene Price c

1 1 1 1 Hawaii Hotel Lake 1249 2
2 1 1 1 Alaska Bed & Breakfast Lake 1499 2
3 1 1 1 Mexico Hotel Beach 999 1
4 1 1 1 California Hotel Mountains 999 2
5 1 1 1 Maine Bed & Breakfast Lake 1249 2
6 1 1 1 Home Home Home 0 2
7 1 1 2 Hawaii Hotel Beach 1499 2
8 1 1 2 Alaska Bed & Breakfast Mountains 999 1
9 1 1 2 Mexico Cabin Mountains 1249 2

10 1 1 2 California Hotel Lake 1249 2
11 1 1 2 Maine Hotel Beach 1499 2
12 1 1 2 Home Home Home 0 2

125

Binary Coding
One more thing must be done to these data before they can be analyzed. The binary design matrix is coded for
each effect. This can be done with PROC TRANSREG.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)

class(price scene lodge / zero=none order=formatted) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
id subj set form c;
run;

The design option specifies that no model is fit; the procedure is just being used to code a design. When
design is specified, dependent variables are not required. The design option can optionally be followed by
“= n” where n is the number of observations to process at one time. By default, PROC TRANSREG codes all
observations in one big group. For very large data sets, this can consume large amounts of memory and time.
Processing blocks of smaller numbers of observations is more efficient. The option design=5000 processes
observations in blocks of 5000. For smaller computers, try something like design=1000. An alternative is to
code by subj, but this is less efficient because block size is so small.

The nozeroconstant and norestoremissing options are not necessary for this example but are included
here because sometimes they are very helpful in coding choice models. The nozeroconstant option specifies
that if a constant variable is created by the coding, it is not to be zeroed. The nozeroconstant option should
always be specified when you specify design=n because the last group of observations may be small and
may contain constant variables. The nozeroconstant option is also important when coding by subj set
because sometimes an attribute is constant within a choice set. The norestoremissing option specifies that
missing values should not be restored when the out= data set is created. By default, the coded class variable
contains a row of missing values for observations in which the class variable is missing. When you specify
the norestoremissing option, these observations contain a row of zeros instead. This option is useful when
there is a constant alternative indicated by missing values. Both of these options, like almost all options in PROC
TRANSREG, can be abbreviated to three characters (noz and nor).

The model statement names the variables to code and provides information about how they are to be coded.
The specification class(place / zero=none order=data) specifies that the variable Place is a clas-
sification variable and requests a binary coding. The zero=none option specifies that one binary variable
should be created for all categories. The order=data option sorts the values into the order they were first
encountered in the data set. It is specified so “Home” will be the last destination in the analysis, as it is in the
data set. The class(price scene lodge / zero=none order=formatted) specification names
the variables Price, Scene, and Lodge as categorical variables and creates binary variables for all of the
levels of all of the variables. The levels are sorted into order based on their formatted values. The lprefix=0
option specifies that when labels are created for the binary variables, zero characters of the original variable name
should be used as a prefix. This means that the labels are created only from the level values. So for example,
“Mountains” and “Bed & Breakfast” are created as labels not “scene Mountains” and “lodge Bed & Breakfast”.

An output statement names the output data set and drops variables that are not needed. These variables do not
have to be dropped. However since they are variable names that are often found in special data set types, PROC
PHREG prints warnings when it finds them. Dropping the variables suppresses the warnings. Finally, the id
statement names the additional variables that we want copied from the input to the output data set. The next steps
print the first coded choice set.

proc print data=coded(obs=6);
id place;
var subj set form c price scene lodge;
run;

proc print data=coded(obs=6) label;
var pl:;
run;

126

proc print data=coded(obs=6) label;
id place;
var sc:;
run;

proc print data=coded(obs=6) label;
id place;
var lo: pr:;
run;

Vacation Example, Strategies for Big Designs

Place Subj Set Form c Price Scene Lodge

Hawaii 1 1 1 2 1249 Lake Hotel
Alaska 1 1 1 2 1499 Lake Bed & Breakfast
Mexico 1 1 1 1 999 Beach Hotel
California 1 1 1 2 999 Mountains Hotel
Maine 1 1 1 2 1249 Lake Bed & Breakfast
Home 1 1 1 2 0 Home Home

Vacation Example, Strategies for Big Designs

Obs Hawaii Alaska Mexico California Maine Home Place

1 1 0 0 0 0 0 Hawaii
2 0 1 0 0 0 0 Alaska
3 0 0 1 0 0 0 Mexico
4 0 0 0 1 0 0 California
5 0 0 0 0 1 0 Maine
6 0 0 0 0 0 1 Home

Vacation Example, Strategies for Big Designs

place Beach Home Lake Mountains Scene

Hawaii 0 0 1 0 Lake
Alaska 0 0 1 0 Lake
Mexico 1 0 0 0 Beach
California 0 0 0 1 Mountains
Maine 0 0 1 0 Lake
Home 0 1 0 0 Home

Vacation Example, Strategies for Big Designs

Bed &
Place Breakfast Cabin Home Hotel Lodge 0 999 1249 1499 Price

Hawaii 0 0 0 1 Hotel 0 0 1 0 1249
Alaska 1 0 0 0 Bed & Breakfast 0 0 0 1 1499
Mexico 0 0 0 1 Hotel 0 1 0 0 999
California 0 0 0 1 Hotel 0 1 0 0 999
Maine 1 0 0 0 Bed & Breakfast 0 0 1 0 1249
Home 0 0 1 0 Home 1 0 0 0 0

The coded design consists of binary variables for destinations Hawaii � Home, scenery Beach � Mountains,
lodging Bed & Breakfast � Hotel, and price 0 � 1499. For example, in the last printed panel of the first choice
set, the Bed & Breakfast column has a 0 for Hawaii since Hawaii has hotel lodging in this choice set. The Bed &
Breakfast column has a 1 for Alaska since Alaska has Bed & Breakfast lodging in this choice set. These binary

127

variables will form the independent variables in the analysis.

PROC PHREG is then run in the usual way to fit the choice model.

proc phreg data=coded;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

We specify the &-trgind macro variable for the model statement independent variable list. PROC TRANS-
REG automatically creates this macro variable. It contains the list of coded independent variables generated by
the procedure. This is so you do not have to figure out what names TRANSREG created and specify them. In
this case, PROC TRANSREG sets &-trgind to contain the following list.

PlaceHawaii PlaceAlaska PlaceMexico PlaceCalifornia PlaceMaine PlaceHome
Price0 Price999 Price1249 Price1499 SceneBeach SceneHome SceneLake
SceneMountains LodgeBed___Breakfast LodgeCabin LodgeHome LodgeHotel

The analysis is stratified by subject and choice set. Each stratum consists of a set of alternatives from which a
subject made one choice. In this example, each stratum consists of six alternatives, one of which was chosen and
five of which were not chosen. (Recall that we used %phchoice(on) on page 71 to customize the output from
PROC PHREG.) In the interest of space, only a few lines of the summary table are printed. It is important to
check the summary table to help ensure that the data were entered correctly. The number of alternatives, number
of chosen alternatives, and the number not chosen should be constant in an example like this one. We will see on
page 129 in the next part of this example how to print a compact summary of the summary table. Here are the
results.

Vacation Example, Strategies for Big Designs

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Subj Set Alternatives Alternatives Chosen

1 1 1 6 1 5
2 1 2 6 1 5
3 1 3 6 1 5
4 1 4 6 1 5
5 1 5 6 1 5
.
.
.

3595 200 13 6 1 5
3596 200 14 6 1 5
3597 200 15 6 1 5
3598 200 16 6 1 5
3599 200 17 6 1 5
3600 200 18 6 1 5

Total 21600 3600 18000

128

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6325.661
AIC 12900.668 6347.661
SBC 12900.668 6415.736

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6575.0076 11 <.0001
Score 5977.4609 11 <.0001
Wald 2308.1976 11 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 3.41528 0.38699 77.8830 <.0001
Alaska 1 0.50991 0.39691 1.6504 0.1989
Mexico 1 2.59644 0.38889 44.5752 <.0001
California 1 1.96867 0.39076 25.3825 <.0001
Maine 1 1.27411 0.39313 10.5036 0.0012
Home 0 0 . . .

0 0 0 . . .
999 1 3.51098 0.09241 1443.5439 <.0001
1249 1 1.32425 0.08383 249.5542 <.0001
1499 0 0 . . .

Beach 1 1.48358 0.06898 462.5029 <.0001
Home 0 0 . . .
Lake 1 0.67406 0.06123 121.1979 <.0001
Mountains 0 0 . . .

Bed & Breakfast 1 0.66936 0.06081 121.1516 <.0001
Cabin 1 -1.41692 0.07118 396.3019 <.0001
Home 0 0 . . .
Hotel 0 0 . . .

The destinations, from most preferred to least preferred, are Hawaii, Mexico, California, Maine, Alaska, and then
stay at home. The utility for lower price is greater than the utility for higher price. The beach is preferred over a
lake, which is preferred over the mountains. A bed & breakfast is preferred over a hotel, which is preferred over a
cabin. Notice that the coefficients for the constant alternative, Home and zero price, are all zero. Also notice that
for each factor, destination, price, scenery and accommodations, the coefficient for the last level is always zero.
This will always occur when we code with zero=none. The last level of each factor is a reference level, and the
other coefficients will have values relative to this zero. So for example, all of the coefficients for the destination
are positive relative to the zero for staying at home. For scenery, all of the coefficients are positive relative to the
zero for the mountains. For accommodations, the coefficient for cabin is less than the zero for hotel, which is less
than the coefficient for bed & breakfast. In some sense, each class variable in a choice model with a constant
alternative has two reference levels or two levels that will always have a zero coefficient: the level corresponding
to the constant alternative and the level corresponding to the last level. At first, it is reassuring to run the model

129

with all levels represented to see that all the right levels get zeroed. Later we will see ways to eliminate these
levels from the output.

Quantitative Price Effect
These data can also be analyzed in a different way. The Price variable can be specified directly as a quantitative
variable, instead of with indicator variables for a qualitative price effect. One way to do this is to print the
independent variable list and copy and edit it, removing the Price variables and adding Price.

%put &_trgind;

Alternatively, you could run PROC TRANSREG again with the new coding. We use this latter approach because
it is easier and it will allow us to illustrate other options. In the previous analysis, there were a number of
structural zero parameter estimates in the results due to the usage of the zero=none option in the PROC
TRANSREG coding. This is a good thing, particularly for a first attempt at the analysis. It is good to specify
zero=none and check the results and make sure you have the right pattern of zeros and nonzeros. Later, you
can run again getting rid of some of the structural zeros. This time, we will explicitly specify the “Home” level
in the zero= option as the reference level so it will be omitted from the &-trgind variable list. The variable
Price is designated as an identity variable � a do-nothing transformation. The identity specification
simply copies the variable Price as is into the output data set and adds Price to the &-trgind variable list.
The statement label price = ’Price’ is specified to explicitly set a label for the identity variable
price. This is because we explicitly modified PROC PHREG output using %phchoice(on) so that the rows of
the parameter estimate table would be labeled only with variable labels not variable names. A label for Price
must be explicitly specified in order for the output to contain a label for the price effect.

proc transreg design data=res2 nozeroconstant norestoremissing;
model class(place / zero=’Home’ order=data) identity(price)

class(scene lodge / zero=’Home’ ’Home’ order=formatted) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id subj set form c;
run;

The summary table is huge, so we would rather not print the entire thing, yet we would like to use it to check the
data entry and processing. We could use the nosummary option in the PROC statement to suppress the table.
Instead, we will use ODS statements to output the summary table to a data set, then we will summarize the table
and print the summary. First, the ods exclude CensoredSummary excludes the summary table from the
output listing. Then the ods output CensoredSummary=CS statement outputs the table to a SAS data set
CS. PROC FREQ is run to list the combinations of event and censored (the number of chosen alternatives and the
number that were not chosen). If data entry is correct for this study, the resulting table will have one line showing
that 3600 times, one alternative was chosen and five were not chosen. The where n(stratum) statement is
used to exclude the last line of the table, the “Total” line, where Stratum is missing in the output data set.

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

proc freq;
tables event * censored / list;
where n(stratum);
run;

Here are the results.

130

Vacation Example, Strategies for Big Designs

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6379.323
AIC 12900.668 6399.323
SBC 12900.668 6461.210

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6521.3450 10 <.0001
Score 5654.4615 10 <.0001
Wald 2261.0883 10 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 14.28398 0.45505 985.3388 <.0001
Alaska 1 11.45659 0.43750 685.7353 <.0001
Mexico 1 13.49398 0.44557 917.1550 <.0001
California 1 12.80977 0.44323 835.2537 <.0001
Maine 1 12.16993 0.44151 759.7996 <.0001

Price 1 -0.00747 0.0001828 1668.6766 <.0001

Beach 1 1.49144 0.06902 466.9792 <.0001
Lake 1 0.69070 0.06082 128.9826 <.0001
Mountains 0 0 . . .

Bed & Breakfast 1 0.68812 0.06057 129.0788 <.0001
Cabin 1 -1.37471 0.07011 384.5218 <.0001
Hotel 0 0 . . .

131

Vacation Example, Strategies for Big Designs

The FREQ Procedure

Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
--

1 5 3600 100.00 3600 100.00

The results of the two different analyses are similar. The coefficients for the destinations all increase by a non-
constant amount (approximately 10.6) but the pattern is the same. There is still a negative effect for price. Also,
the fit of this model is slightly worse, Chi-Square = 6521.3450, compared to the previous value of 6575.0076
(bigger values mean better fit), because price has one fewer parameter.

Quadratic Price Effect
In a previous example we saw price treated as a qualitative factor with two parameters and two df. Then we
saw price treated as a quantitative factor with one parameter and one df. Alternatively, we could treat price as
quantitative and add a quadratic price effect. Like treating price as a qualitative factor, there are two parameters
and two df for price. First we create PriceL, the linear price term by centering the original price and dividing
by the price increment (250). This maps (999, 1249, 1499) to (-1, 0, 1). Then we run PROC TRANSREG and
PROC PHREG with the new price variables.

data res3;
set res2;
PriceL = price;
if price then pricel = (price - 1249) / 250;
run;

proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
model class(place / zero=’Home’ order=data) pspline(pricel / degree=2)

class(scene lodge / zero=’Home’ ’Home’ order=formatted) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label pricel = ’Price’;
id subj set form c;
run;

The pspline or polynomial spline expansion with the degree=2 option replaces the variable PriceL with
two coded variables, PriceL-1 (which is the same as the original PriceL) and PriceL-2 (which is Pri-
ceL squared). A degree=2 spline with no knots (neither knots= nor nknots= were specified) simply
expands the variable into a quadratic polynomial.

proc phreg data=coded nosummary;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

This step produced the following results.

132

Vacation Example, Strategies for Big Designs

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6325.661
AIC 12900.668 6347.661
SBC 12900.668 6415.736

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6575.0076 11 <.0001
Score 5977.4609 11 <.0001
Wald 2308.1976 11 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 4.73953 0.38552 151.1393 <.0001
Alaska 1 1.83416 0.39258 21.8288 <.0001
Mexico 1 3.92069 0.38610 103.1154 <.0001
California 1 3.29292 0.38608 72.7475 <.0001
Maine 1 2.59837 0.38913 44.5871 <.0001

Price 1 1 -1.75549 0.04620 1443.5439 <.0001
Price 2 1 0.43124 0.05933 52.8369 <.0001

Beach 1 1.48358 0.06898 462.5029 <.0001
Lake 1 0.67406 0.06123 121.1979 <.0001
Mountains 0 0 . . .

Bed & Breakfast 1 0.66936 0.06081 121.1516 <.0001
Cabin 1 -1.41692 0.07118 396.3019 <.0001
Hotel 0 0 . . .

The fit is exactly the same as when price was treated as qualitative, Chi-Square = 6575.0076. This is because
both models are the same except for the different but equivalent 2 df codings of price. The coefficients for
the destinations in the two models differ by a constant 1.32425. The coefficients for the factors after price are
unchanged. The part-worth utility for $999 is�1:75549�(999�1249)=250+0:43124�((999�1249)=250) 2 =

2:18673, the part-worth utility for $1249 is�1:75549�(1249�1249)=250+0:43124�((1249�1249)=250)2 =

133

0, and the part-worth utility for $1499 is�1:75549� (1499� 1249)=250+0:43124� ((1499�1249)=250)2 =

�1:32425, which differ from the coefficients when price was treated as qualitative, by a constant -1.32425.

Effects Coding
In the previous analyses, binary (1, 0) codings were used for the variables. The next analysis illustrates effects
(1, 0, -1) coding. The two codings differ in how the final reference level is coded. In binary coding the reference
level is coded with zeros. In effects coding, the reference level is coded with minus ones.

Binary Coding Effects Coding

Levels One Two One Two
1 1 0 1 0
2 0 1 0 1
3 0 0 -1 -1

In this example, we will use a binary coding for the destinations and effects codings for the attributes.

PROC TRANSREG can be used for effects coding. The effects option used inside the parentheses after
class asks for a (0, 1, -1) coding. The zero= option specifies the levels that receive the -1’s. PROC PHREG
is run with almost the same variable list as before, except now the variables for the reference levels, those whose
parameters are structural zeros are omitted. Refer back to the parameter estimates table on page 128, some of
which is reproduced next:

(Some Lines in the)
Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Home 0 0 . . .
0 0 0 . . .

1499 0 0 . . .
Home 0 0 . . .
Mountains 0 0 . . .
Home 0 0 . . .
Hotel 0 0 . . .

Notice that the coefficients for the constant alternative, Home and zero price, are all zero. Also notice that for
each factor, destination, price, scenery and accommodations, the coefficient for the last level is always zero.
In some sense, each class variable in a choice model with a constant alternative has two reference levels or
two levels that will always have a zero coefficient: the level corresponding to the constant alternative and the
level corresponding to the last level. In some of the preceding examples, we eliminated the “Home” levels
by specifying zero=Home. Now we will see how to eliminate all of the structural zeros from the parameter
estimate table.

First, for each classification variable, we change the level for the constant alternative to missing. (Recall that
they were originally missing and we only made them nonmissing to deliberately produce the zero coefficients.)
This will cause PROC TRANSREG to ignore those levels when constructing dummy variables. When you use
this strategy, you must specify the norestoremissing option in the PROC TRANSREG statement. During
the first stage of design matrix creation, PROC TRANSREG puts zeros in the dummy variables for observations
with missing class levels. At the end, it replaces the zeros with missings, “restoring the missing values”. When
the norestoremissing option is specified, missing values are not restored and we get zeros in the dummy
variables for missing class levels. The DATA step if statements recode the constant levels to missing. Then in
PROC TRANSREG, the reference levels “Mountains” and “Hotel” are listed in the zero= option in the class

134

specification.

data res4;
set res3;
if scene = 0 then scene = .;
if lodge = 0 then lodge = .;
run;

proc transreg design=5000 data=res4 nozeroconstant norestoremissing;
model class(place / zero=’Home’ order=data) pspline(pricel / degree=2)

class(scene lodge /
effects zero=’Mountains’ ’Hotel’ order=formatted) / lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label pricel = ’Price’;
id subj set form c;
run;

The coded data and design matrix are printed for the first choice set. The coded design matrix begins with five
binary columns for the destinations, “Hawaii” through “Maine”. There is not a column for the stay at home
destination and the row for stay at home has all zeros in the coded variables. Next is the linear price effect, “Price
1”, consisting of 0, 1, and -1. It is followed by the quadratic price effect, “Price 2”, which is “Price 1” squared.
Next are the scenery terms, effects coded. “Beach” and “Lake” have values of 0 and 1; -1’s in the fourth row for
the reference level, “Mountains”; and zeros in the last row for the stay at home alternative. Next are the lodging
terms, effects coded. “Bed & Breakfast” and “Cabin” have values of 0 and 1; -1’s in the first, third and fourth
row for the reference level, “Hotel”; and zeros in the last row for the stay at home alternative.

proc print data=coded(obs=6) label;
run;

Vacation Example, Strategies for Big Designs

Price Price Bed &
Obs Hawaii Alaska Mexico California Maine 1 2 Beach Lake Breakfast

1 1 0 0 0 0 0 0 0 1 -1
2 0 1 0 0 0 1 1 0 1 1
3 0 0 1 0 0 -1 1 1 0 -1
4 0 0 0 1 0 -1 1 -1 -1 -1
5 0 0 0 0 1 0 0 0 1 1
6 0 0 0 0 0 0 0 0 0 0

Obs Cabin Place Price Scene Lodge Subj Set Form c

1 -1 Hawaii 0 Lake Hotel 1 1 1 2
2 0 Alaska 1 Lake Bed & Breakfast 1 1 1 2
3 -1 Mexico -1 Beach Hotel 1 1 1 1
4 -1 California -1 Mountains Hotel 1 1 1 2
5 0 Maine 0 Lake Bed & Breakfast 1 1 1 2
6 0 Home 0 . . 1 1 1 2

proc phreg data=coded nosummary;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

135

Vacation Example, Strategies for Big Designs

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6325.661
AIC 12900.668 6347.661
SBC 12900.668 6415.736

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6575.0076 11 <.0001
Score 5977.4609 11 <.0001
Wald 2308.1976 11 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 5.20955 0.38305 184.9688 <.0001
Alaska 1 2.30419 0.38868 35.1442 <.0001
Mexico 1 4.39072 0.38328 131.2299 <.0001
California 1 3.76294 0.38324 96.4090 <.0001
Maine 1 3.06839 0.38657 63.0031 <.0001

Price 1 1 -1.75549 0.04620 1443.5439 <.0001
Price 2 1 0.43124 0.05933 52.8369 <.0001

Beach 1 0.76436 0.03857 392.6592 <.0001
Lake 1 -0.04515 0.03393 1.7708 0.1833

Bed & Breakfast 1 0.91854 0.03916 550.2758 <.0001
Cabin 1 -1.16773 0.04460 685.4980 <.0001

It is instructive to compare the results of this analysis to the previous analysis on page 131. First, model fit and
chi-square statistics are the same indicating the models are equivalent. The coefficients for the destinations differ
by a constant 0.47002, the price coefficients are the same, the scenery coefficients differ by a constant -0.71921,
and the lodging coefficients differ by a constant 0.24919. Notice that 0:47002 + 0:24919 + �0:71921 = 0, so
the utility for each alternative is unchanged by the different but equivalent codings.

136

Alternative-Specific Effects
In all of the analyses presented in this example so far, we have assumed that the effects for price, scenery,
and accommodations are generic or constant across the different destinations. Equivalently, we assumed that
destination does not interact with the attributes. Next, we show a model with alternative-specific effects that
does not make this assumption. Our new model allows for different price, scenery and lodging effects for each
destination. The coding can be done with PROC TRANSREG and its syntax for interactions. Before we do the
coding, lets go back to the design preparation stage and redo it in a more normal fashion so reference levels will
be omitted from the analysis.

We start by creating the data set KEY. This step differs from the one we saw on page 122 only in that now we
have a missing value for Place for the constant alternative.

data key;
input Place $ 1-10 (Lodge Scene Price) ($);
datalines;

Hawaii x1 x6 x11
Alaska x2 x7 x12
Mexico x3 x8 x13
California x4 x9 x14
Maine x5 x10 x15
. . . .
;

Next we use the %MKTROLL macro to process the design and the %MKTMERGE macro to merge the design
and data.

%mktroll(design=sasuser.blockdes, key=key, alt=place, out=rolled)

%mktmerge(design=rolled, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choose1-choose&n,
stmts=%str(price = input(put(price, price.), 5.);

format scene scene. lodge lodge.;))

proc print data=res2(obs=12); run;

The usage of the %MKTROLL macro is exactly the same as we saw on page 122. The %MKTMERGE macro
differs from page 124 in that instead of assigning labels and recoding price in a separate DATA step, we instead
do it directly in the macro. The stmts= option is used to add a price = assignment statement and format
statement to the data step that merges the two data sets. The statements were included in a %str() macro
since they contain semicolons. Here are the first two choice sets.

Vacation Example, Strategies for Big Designs

Obs Subj Form Set Place Lodge Scene Price c

1 1 1 1 Hawaii Hotel Lake 1249 2
2 1 1 1 Alaska Bed & Breakfast Lake 1499 2
3 1 1 1 Mexico Hotel Beach 999 1
4 1 1 1 California Hotel Mountains 999 2
5 1 1 1 Maine Bed & Breakfast Lake 1249 2
6 1 1 1 . . . 2

7 1 1 2 Hawaii Hotel Beach 1499 2
8 1 1 2 Alaska Bed & Breakfast Mountains 999 1
9 1 1 2 Mexico Cabin Mountains 1249 2

10 1 1 2 California Hotel Lake 1249 2
11 1 1 2 Maine Hotel Beach 1499 2
12 1 1 2 . . . 2

Notice that the attributes for the constant alternative are all missing. Next, we code with PROC TRANSREG.

137

Since we are using missing values for the constant alternative, we must specify the nozeroconstant option
in the PROC TRANSREG statement. First, we specify the variable Place as a class variable. Next, we
interact Place with all of the attributes, Price, Scene, and Lodge, to create the alternative-specific effects.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)

class(place * price place * scene place * lodge /
zero=none order=formatted) / lprefix=0 sep=’ ’ ’, ’;

output out=coded(drop=_type_ _name_ intercept);
id subj set form c;
run;

proc print data=coded(obs=6) label;
run;

The coded design matrix consists of:

� five binary columns, “Hawaii” through “Maine”, for the five destinations,

� fifteen binary columns (5 destinations times 3 prices), “Alaska, 999” through “Mexico, 1499”, for the
alternative-specific price effects,

� fifteen binary columns (5 destinations times 3 sceneries), “Alaska, Beach” through “Mexico, Mountains”,
for the alternative-specific scenery effects,

� fifteen binary columns (5 destinations times 3 lodgings), “Alaska, Bed & Breakfast” through “Mexico,
Hotel”, for the alternative-specific lodging effects.

The entire sixth row of the coded design matrix, the stay at home alternative consists of zeros.

Vacation Example, Strategies for Big Designs

Alaska, Alaska, Alaska, California,
Obs Hawaii Alaska Mexico California Maine 999 1249 1499 999

1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 1 0
3 0 0 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 1
5 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 0 0 0 0

California, California, Hawaii, Hawaii, Hawaii, Maine, Maine, Maine,
Obs 1249 1499 999 1249 1499 999 1249 1499

1 0 0 0 1 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0

Mexico, Mexico, Mexico, Alaska, Alaska, Alaska, California, California,
Obs 999 1249 1499 Beach Lake Mountains Beach Lake

1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0
3 1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0

138

California, Hawaii, Hawaii, Hawaii, Maine, Maine, Maine, Mexico,
Obs Mountains Beach Lake Mountains Beach Lake Mountains Beach

1 0 0 1 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 1
4 1 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 0

Alaska, California,
Mexico, Mexico, Bed & Alaska, Alaska, Bed & California,

Obs Lake Mountains Breakfast Cabin Hotel Breakfast Cabin

1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0

Hawaii, Maine, Bed Mexico,
California, Bed & Hawaii, Hawaii, & Maine, Maine, Bed &

Obs Hotel Breakfast Cabin Hotel Breakfast Cabin Hotel Breakfast

1 0 0 0 1 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0

Mexico, Mexico,
Obs Cabin Hotel Place Price Scene Lodge Subj Set Form c

1 0 0 Hawaii 1249 Lake Hotel 1 1 1 2
2 0 0 Alaska 1499 Lake Bed & Breakfast 1 1 1 2
3 0 1 Mexico 999 Beach Hotel 1 1 1 1
4 0 0 California 999 Mountains Hotel 1 1 1 2
5 0 0 Maine 1249 Lake Bed & Breakfast 1 1 1 2
6 0 0 . 1 1 1 2

Analysis proceeds by running PROC PHREG as before.

proc phreg data=coded nosummary;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

139

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6296.939
AIC 12900.668 6366.939
SBC 12900.668 6583.543

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6603.7295 35 <.0001
Score 6626.5116 35 <.0001
Wald 2272.7813 35 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 3.28017 0.40142 66.7713 <.0001
Alaska 1 0.88221 0.51968 2.8819 0.0896
Mexico 1 2.65936 0.42318 39.4917 <.0001
California 1 1.92812 0.42686 20.4034 <.0001
Maine 1 1.18481 0.48444 5.9815 0.0145

Alaska, 999 1 3.45444 0.26284 172.7323 <.0001
Alaska, 1249 1 0.73751 0.38764 3.6198 0.0571
Alaska, 1499 0 0 . . .

California, 999 1 3.63995 0.21968 274.5414 <.0001
California, 1249 1 1.46294 0.21528 46.1777 <.0001
California, 1499 0 0 . . .

Hawaii, 999 1 3.45605 0.13258 679.5428 <.0001
Hawaii, 1249 1 1.42337 0.12282 134.3047 <.0001
Hawaii, 1499 0 0 . . .

Maine, 999 1 3.75491 0.25232 221.4693 <.0001
Maine, 1249 1 1.20395 0.29647 16.4910 <.0001
Maine, 1499 0 0 . . .

Mexico, 999 1 3.37240 0.16292 428.4889 <.0001
Mexico, 1249 1 1.22668 0.17987 46.5120 <.0001
Mexico, 1499 0 0 . . .

Alaska, Beach 1 1.41262 0.21525 43.0704 <.0001
Alaska, Lake 1 0.29267 0.22784 1.6501 0.1989
Alaska, Mountains 0 0 . . .

California, Beach 1 1.59118 0.15540 104.8399 <.0001
California, Lake 1 0.44899 0.16023 7.8518 0.0051
California, Mountains 0 0 . . .

Hawaii, Beach 1 1.44565 0.12351 137.0010 <.0001
Hawaii, Lake 1 0.85820 0.13430 40.8340 <.0001
Hawaii, Mountains 0 0 . . .

140

Maine, Beach 1 1.43838 0.20887 47.4229 <.0001
Maine, Lake 1 0.64057 0.22338 8.2232 0.0041
Maine, Mountains 0 0 . . .

Mexico, Beach 1 1.54452 0.14136 119.3759 <.0001
Mexico, Lake 1 0.73442 0.12926 32.2801 <.0001
Mexico, Mountains 0 0 . . .

Alaska, Bed & Breakfast 1 0.40383 0.19122 4.4600 0.0347
Alaska, Cabin 1 -1.78198 0.31993 31.0240 <.0001
Alaska, Hotel 0 0 . . .

California, Bed & Breakfast 1 0.62159 0.13647 20.7470 <.0001
California, Cabin 1 -1.61786 0.19845 66.4643 <.0001
California, Hotel 0 0 . . .

Hawaii, Bed & Breakfast 1 0.65588 0.12580 27.1844 <.0001
Hawaii, Cabin 1 -1.23939 0.11982 106.9906 <.0001
Hawaii, Hotel 0 0 . . .

Maine, Bed & Breakfast 1 0.65929 0.17686 13.8963 0.0002
Maine, Cabin 1 -1.54305 0.20860 54.7205 <.0001
Maine, Hotel 0 0 . . .

Mexico, Bed & Breakfast 1 0.70823 0.13084 29.3001 <.0001
Mexico, Cabin 1 -1.45232 0.13758 111.4373 <.0001
Mexico, Hotel 0 0 . . .

There are zero coefficients for the reference alternative. Do we need this more complicated model instead of the
simpler model? To answer this, first look at the coefficients. Are they similar across different destinations? In
this case they seem to be. This suggests that the simpler model may be sufficient.

More formally, the two models can be statistically compared. The null hypothesis that the two models are not
significantly different can be tested by comparing the likelihoods for the two models. The difference between
two �2 log(LC)’s (the number reported under “With Covariates” in the output) has a chi-square distribution.
The degrees of freedom for the test is the difference between the two df for the two likelihoods. The difference
6603:7295�6575:0076= 28:7219 is distributed �2 with 35�11 = 24 df (p < 0:23). So this more complicated
model does not account for significantly more variance than the simpler model.

PROC FACTEX Code Generated by the %MKTDES Macro
In the first part of this example, starting on page 108, we used the %MKTDES macro as follows:

%mktdes(factors=x1-x15=3, n=36, procopts=seed=7654321)

We did not show the PROC FACTEX code actually generated by the macro at that point because it is more
complex than is really necessary for a problem this simple. This is because the macro uses an algorithm well-
suited for much more complicated problems such as models with interactions and a mix of levels. The macro
makes no attempt to simplify the code it produces for simple examples such as this one. The %MKTDES macro
generated the following PROC FACTEX code:

141

proc factex;
factors _1-_15 / nlev=3;
size design=min;
model estimate=(

_1
_2
_3
_4
_5
_6
_7
_8
_9
_10
_11
_12
_13
_14
_15
);

output out=Cand1(drop=_:)
[_1]=x1 nvals=(1 2 3)
[_2]=x2 nvals=(1 2 3)
[_3]=x3 nvals=(1 2 3)
[_4]=x4 nvals=(1 2 3)
[_5]=x5 nvals=(1 2 3)
[_6]=x6 nvals=(1 2 3)
[_7]=x7 nvals=(1 2 3)
[_8]=x8 nvals=(1 2 3)
[_9]=x9 nvals=(1 2 3)
[_10]=x10 nvals=(1 2 3)
[_11]=x11 nvals=(1 2 3)
[_12]=x12 nvals=(1 2 3)
[_13]=x13 nvals=(1 2 3)
[_14]=x14 nvals=(1 2 3)
[_15]=x15 nvals=(1 2 3)
;

run; quit;

The result of this step is a design with 15 factors, x1-x15, each with values 1, 2, and 3. This can be seen by the
x1 nvals=(1 2 3) through x15 nvals=(1 2 3) specifications. Internally, PROC FACTEX creates 15
factors, -1 - -15, which it renames to x1-x15 when the output data set CAND1 is created and the level
values are assigned. The statement factors -1--15 / nlev=3 specifies that we are creating a design
with 15 three-level factors. The statement size design=min specifies that PROC FACTEX should create
a minimum sized design for this problem. The statement model estimate=(...) specifies the effects
that must be estimated, in this case the main effects. Since only main effects are requested, PROC FACTEX
creates a resolution III design. In this example, there is a one-to-one mapping from the underscore variables to
the final “x” variables. In more complicated examples, each factor may be composed of the main-effects and
interactions of two or more underscore variables. Also, the nvals= option can be used to create factors with
differing numbers of levels.

We stated on page 109 that the preceding PROC FACTEX code is almost the same as the simpler PROC FACTEX
code shown next.

proc factex;
factors x1-x15 / nlev=3;
size design=min;
model res=3;
output out=Cand1;
run; quit;

142

Here is some code that is exactly equivalent to the PROC FACTEX code that the macro generates.

proc factex;
factors x1-x15 / nlev=3;
size design=min;
model res=3;
output out=Cand1

x1 nvals=(1 2 3)
x2 nvals=(1 2 3)
x3 nvals=(1 2 3)
x4 nvals=(1 2 3)
x5 nvals=(1 2 3)
x6 nvals=(1 2 3)
x7 nvals=(1 2 3)
x8 nvals=(1 2 3)
x9 nvals=(1 2 3)
x10 nvals=(1 2 3)
x11 nvals=(1 2 3)
x12 nvals=(1 2 3)
x13 nvals=(1 2 3)
x14 nvals=(1 2 3)
x15 nvals=(1 2 3)
;

run; quit;

The nvals= option is used to code each factor with the numeric values 1, 2, and 3 instead of the default -1, 0,
and 1. In this example, the statement model res=3 is equivalent to model estimate=(x1-x15). Both
create a main-effects only or resolution III design.

The thing that distinguishes the code that the macro generates from the code we might have written from scratch
is the use of pseudo-factors in the macro. The factors -1--15, are pseudo-factors and are not of direct interest.
They are used to create the derived factors x1 - x15, the three-level factors of interest. This example is a
simple problem. All factors have the same numbers of levels, the number of levels is a power of a prime, and there
are no interactions. In a simple example such as this, pseudo-factors are not needed. However, pseudo-factors
are needed for more complicated problems, so it is easier for the macro to simply always use pseudo-factors. For
this problem, the %MKTDES macro generates PROC FACTEX code that creates a three-level pseudo-factor for
each factor of interest, renames the pseudo-factor creating the specified derived factor, and maps the values to 1,
2, and 3. The mapping of pseudo-factors to derived factors and original levels (-1, 0, 1) to actual levels (1, 2, 3)
is completely one to one.

143

Vacation Example, Big Designs and Asymmetry
A researcher is interested in studying choice of vacation destinations. This example is a modification of the
previous example. Now, all alternatives do not have the same factors, and all factors do not have the same
numbers of levels. There are still five destinations of interest: Hawaii, Alaska, Mexico, California, and Maine.
Each alternative is composed of three factors like before: package cost, scenery, and accommodations, only now
they do not all have the same levels, and the Hawaii and Mexico alternatives are composed of one additional
attribute. Here is a summary of the design.

Factor Destination Attribute Levels
X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel

X6 Hawaii Scenery Mountains, Lake, Beach
X7 Alaska Scenery Mountains, Lake, Beach
X8 Mexico Scenery Mountains, Lake, Beach
X9 California Scenery Mountains, Lake, Beach
X10 Maine Scenery Mountains, Lake, Beach

X11 Hawaii Price $1249, $1499, $1749
X12 Alaska Price $1249, $1499, $1749
X13 Mexico Price $999, $1249, $1499
X14 California Price $999, $1249, $1499, $1749
X15 Maine Price $999, $1249, $1499

X16 Mexico Side Trip Yes, No
X17 Hawaii Side Trip Yes, No

Factor Destination Attribute Levels
X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X6 Scenery Mountains, Lake, Beach
X11 Price $1249, $1499, $1749
X17 Side Trip Yes, No

X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X7 Scenery Mountains, Lake, Beach
X12 Price $1249, $1499, $1749

X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X8 Scenery Mountains, Lake, Beach
X13 Price $999, $1249, $1499
X16 Side Trip Yes, No

X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X9 Scenery Mountains, Lake, Beach
X14 Price $999, $1249, $1499, $1749

X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X10 Scenery Mountains, Lake, Beach
X15 Price $999, $1249, $1499

144

For Hawaii and Alaska the costs are $1,249, $1,499, and $1,749; for California, the prices are $999, $1,249,
$1,499, and $1,749; and for Mexico and Maine the prices are $999, $1,249, and $1,499. Scenery (mountains,
lake, beach) and accommodations (cabin, bed & breakfast, and hotel) are the same as before. The Mexico trip
now has the option of a side trip to sites of archaeological significance, via bus, for an additional cost of $100.
The Hawaii trip has the option of a side trip to an active volcano, via helicopter, for an additional cost of $200.
This is typical of the problems that marketing researchers face. We have lots of factors and asymmetry � each
alternative is not composed of the same factors, and the factors do not all have the same numbers of levels.

This example illustrates many of the techniques that are used in the search for a good design including

� creating a candidate set with asymmetry by coding down,

� creating a candidate set with asymmetry by using pseudo-factors,

� using a tabled design to create a candidate set,

� efficiently blocking an existing design,

� generating artificial data to test the design.

� aggregating the data.

Choosing the Number of Choice Sets
We can use the %MKTRUNS autocall macro to suggest experimental design sizes. (All of the autocall macros
used in this report are documented starting on page 261.) As before, we specify a list containing the number of
levels of each factor.

title ’Vacation Example with Asymmetry’;

%mktruns(3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 2 2)

The output tells us the size of the saturated design, which is the number of parameters in the linear design, and
suggests design sizes.

Vacation Example with Asymmetry

Some Reasonable
Design Sizes Cannot Be
(Saturated=34) Violations Divided By

72 0
144 0
216 0
36 2 8

108 2 8
180 2 8
54 18 4 12 8
90 18 4 12 8

126 18 4 12 8
162 18 4 12 8

We need at least 34 choice sets, as shown by “(Saturated=34)” in the listing. Any size that is a multiple of
72 would be optimal. However, 36 is pretty good. It is not divisible by 8 = 2 � 4, so we cannot have equal
frequencies in the California price and Mexico and Hawaii side trip combinations. This should not pose any
problem, and 36 is much more manageable than 72, so again we chose 36 choice sets. This leaves only 2 error
df for the linear model, but in the choice model we will have adequate error df.

145

Designing the Choice Experiment
This problem requires a design with 1 four-level factor for price and 4 three-level factors for price. There are
10 three-level factors for scenery and accommodations as before. Also, we need 2 two-level factors for the
two side trips. Note that we do not need a factor for the price or mode of transportation of the side trips since
they are constant within each trip. We will look at several ways of approaching this problem. First, we will
run the %MKTDES macro specifyingfactors=x1-x13 x15=3 x14=4 x16 x17=2which indicates that
x1-x13 x15 are three-level-factors, x14 is a four-level-factor, and x16 x17 are two-level-factors. We also
specify a random number seed.

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36,
procopts=seed=7654321)

The macro generates the following PROC FACTEX code.

proc factex;
factors _1-_32 / nlev=2;
size design=min;
model estimate=(

_1|_2
_3|_4
_5|_6
_7|_8
_9|_10
_11|_12
_13|_14
_15|_16
_17|_18
_19|_20
_21|_22
_23|_24
_25|_26
_27|_28
_29|_30
_31
_32
);

output out=Cand1(drop=_:)
[_1 _2]=x1 nvals=(1 2 3 1)
[_3 _4]=x2 nvals=(1 2 3 1)
[_5 _6]=x3 nvals=(1 2 3 1)
[_7 _8]=x4 nvals=(1 2 3 1)
[_9 _10]=x5 nvals=(1 2 3 1)
[_11 _12]=x6 nvals=(1 2 3 1)
[_13 _14]=x7 nvals=(1 2 3 1)
[_15 _16]=x8 nvals=(1 2 3 1)
[_17 _18]=x9 nvals=(1 2 3 1)
[_19 _20]=x10 nvals=(1 2 3 1)
[_21 _22]=x11 nvals=(1 2 3 1)
[_23 _24]=x12 nvals=(1 2 3 1)
[_25 _26]=x13 nvals=(1 2 3 1)
[_27 _28]=x15 nvals=(1 2 3 1)
[_29 _30]=x14 nvals=(1 to 4)
[_31]=x16 nvals=(1 2)
[_32]=x17 nvals=(1 2)
;

run; quit;

The statement factors -1--32 / nlev=2 generates a design with 32 two-level factors. The statement
size design=min requests the smallest design in which all the effects specified in the model statement are

146

estimable. The first factor we want from this design is x1 with three levels. We see in the model statement
that -1|-2 must be estimable, that is the -1 main effect, the -2 main effect, and the -1*-2 interaction must
be estimable. From the 1 df for -1, the 1 df for -2, and the 1 df for -1*-2, we can construct the three-level
factor x1 with 3 � 1 df and one df to spare. The output statement specification [-1 -2]=x1 nvals=(1
2 3 1) constructs the factor x1 from the values of -1 and -2. The (1,1), (1,2), (2,1), (2,2) values are coded
1, 2, 3, and 1 creating a three level factor. The three-level factors x2 through x13 and x15 are created in the
same manner from -2 through -28. The factor x14 has four levels, and is created from -29 and -30 and their
interaction. The factors x16 and x17 have two levels, and are created from -31 and -32, respectively.

The factors -1--32 are pseudo-factors and not of direct interest. They are used to create the derived factors x1
- x17, the two-level, the three-level, and the four-level factors of interest. This example constructed three-level
factors from 2 two-level factors and their interaction by coding down. Four pairs of values (1,1), (1,2), (2,1),
(2,2) could become four levels 1, 2, 3, 4, but instead are mapped to 1, 2, 3, 1 by coding down. The value 1
maps to 1, the value 2 maps to 2, the value 3 maps to 3, and the value 4 maps to 1. This creates a candidate set
with imbalance (twice as many ones as twos or threes), but we hope that PROC OPTEX will be able to find a
reasonably balanced design.

The macro generates the following PROC OPTEX code.

proc optex data=Cand1 seed=7654321;
class x1-x13 x15 x14 x16 x17 / param=orthref;
model x1-x13 x15 x14 x16 x17;
generate n=36 iter=10 keep=5 method=m_federov;
output out=Design;
run; quit;

The class and model statements contain the factors in the same order they appeared in the factors=x1-
x13 x15=3 x14=4 x16 x17=2 option. The other aspects of the PROC OPTEX syntax are no different
than we saw in previous examples.

The macro finds a design with D-efficiency = 76.0622. Since the design is based on two-level factors, we can try
larger candidate sets, each time doubling the size.

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=128,
procopts=seed=7654321)

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=256,
procopts=seed=7654321)

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=512,
procopts=seed=7654321)

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=1024,
procopts=seed=7654321)

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=2048,
procopts=seed=7654321)

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, n=36, size=4096,
procopts=seed=7654321)

The slowest of these steps with size=4096, takes over 1.5 minutes and produced a design with D-efficiency =
83.1150.

Since we have a mix of factor levels, would could also try basing the design on three-level factors. The nlev=3
option is specified to use three-level pseudo-factors. The sizes now increase by a factor of three. The factors=
and seed= options are the same.

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, nlev=3, n=36,
procopts=seed=7654321)

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, nlev=3, n=36, size=243,
procopts=seed=7654321)

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, nlev=3, n=36, size=729,
procopts=seed=7654321)

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2, nlev=3, n=36, size=2187,
procopts=seed=7654321)

147

The first of the preceding macro invocations generated the following PROC FACTEX code.

proc factex;
factors _1-_18 / nlev=3;
size design=min;
model estimate=(

_1
_2
_3
_4
_5
_6
_7
_8
_9
_10
_11
_12
_13
_14
_15|_16
_17
_18
);

output out=Cand1(drop=_:)
[_1]=x1 nvals=(1 2 3)
[_2]=x2 nvals=(1 2 3)
[_3]=x3 nvals=(1 2 3)
[_4]=x4 nvals=(1 2 3)
[_5]=x5 nvals=(1 2 3)
[_6]=x6 nvals=(1 2 3)
[_7]=x7 nvals=(1 2 3)
[_8]=x8 nvals=(1 2 3)
[_9]=x9 nvals=(1 2 3)
[_10]=x10 nvals=(1 2 3)
[_11]=x11 nvals=(1 2 3)
[_12]=x12 nvals=(1 2 3)
[_13]=x13 nvals=(1 2 3)
[_14]=x15 nvals=(1 2 3)
[_15 _16]=x14 nvals=(1 to 4 1 to 4 1)
[_17]=x16 nvals=(1 2 1)
[_18]=x17 nvals=(1 2 1)
;

run; quit;

Now the design is generated from 18 pseudo-factors. The three-level factors x1-x13 x15 are created directly
from -1--14. The four-level factor x14 is created from -15 and -16 and their interaction. The nine values
are coded down into: 1 2 3 4 1 2 3 4 1. The two-level factors x16 x17 are created from -17 -18 coding down
the three values to 1, 2, 1. The last of the preceding macro invocations with size=2187 produces a design with
D-efficiency = 84.6249 and took about 40 seconds.

We could also try a multi-step process. The first step, designated by step=1, runs only PROC FACTEX and
creates a candidate set for only the three-level factors. The random number seed is not specified since PROC
OPTEX is not run in this step. The next step, step=2, generates a candidate set for the two-level and four-level
factors and crosses it with the candidate set from step 1. Then PROC OPTEX is run on the resulting candidate
set. The advantage of doing this is the candidate set is balanced and orthogonal.

%mktdes(factors=x1-x13 x15=3, run=factex, step=1)
%mktdes(factors=x14=4 x16 x17=2, run=factex optex, step=2, n=36,

procopts=seed=7654321)

148

The first step generated the following PROC FACTEX code.

proc factex;
factors _1-_14 / nlev=3;
size design=min;
model estimate=(

_1
_2
_3
_4
_5
_6
_7
_8
_9
_10
_11
_12
_13
_14
);

output out=Cand1(drop=_:)
[_1]=x1 nvals=(1 2 3)
[_2]=x2 nvals=(1 2 3)
[_3]=x3 nvals=(1 2 3)
[_4]=x4 nvals=(1 2 3)
[_5]=x5 nvals=(1 2 3)
[_6]=x6 nvals=(1 2 3)
[_7]=x7 nvals=(1 2 3)
[_8]=x8 nvals=(1 2 3)
[_9]=x9 nvals=(1 2 3)
[_10]=x10 nvals=(1 2 3)
[_11]=x11 nvals=(1 2 3)
[_12]=x12 nvals=(1 2 3)
[_13]=x13 nvals=(1 2 3)
[_14]=x15 nvals=(1 2 3)
;

run; quit;

This is standard PROC FACTEX for three-level factors. There are no interactions or coding down. This candidate
set has 81 runs. The second macro generates the following PROC FACTEX code.

proc factex;
factors _1-_4 / nlev=2;
size design=min;
model estimate=(

_1|_2
_3
_4
);

output out=Cand2(drop=_:)
pointrep=Cand1
[_1 _2]=x14 nvals=(1 to 4)
[_3]=x16 nvals=(1 2)
[_4]=x17 nvals=(1 2)
;

run; quit;

This PROC FACTEX step generates a design in CAND2 from the previously generated design for the three-level
factors CAND1 and another design it is generating for the two-level and four-level factors. The only aspect of
this code that is new is the pointrep=Cand1 option. PROC FACTEX creates a design with x14 x16 x17

149

in it in 8 runs and crosses it with the 81 runs in the CAND1 data set creating a candidate set with 8� 81 = 648

runs. Each run in the three-level factor design (CAND1) appears with each run in the two-level factor design.

The macro generated the following PROC OPTEX code. The only difference in the PROC OPTEX code from
the one-step method is now the class and model statements have the factors grouped by step.

proc optex data=Cand2 seed=7654321;
class

x1-x13 x15
x14 x16 x17
/ param=orthref;

model
x1-x13 x15
x14 x16 x17
;

generate n=36 iter=10 keep=5 method=m_federov;
output out=Design;
run; quit;

The resulting design had a D-efficiency of 82.4738. Like before, we can try this again with larger sizes.

%mktdes(factors=x1-x13 x15=3, run=factex, step=1, size=243)
%mktdes(factors=x14=4 x16 x17=2, run=factex optex, step=2, size=16, n=36,

procopts=seed=7654321)

This approach creates a candidate set with 16 � 243 = 3888 runs. The design has D-efficiency = 86.1054 and
took about 1.5 minutes.

Using a Tabled Design as a Candidate Set
Another alternative for creating a candidate set is to use a standard tabled design, such as the L 36, instead of
using PROC PLAN or PROC FACTEX. The L36 has 11 two-level factors and 12 three-level factors in 36 runs.
In this example, we cross part of this design with a full-factorial design with 2 three-level factors and 1 four-level
factor, creating a candidate set in 36 � 3 � 3 � 4 = 1296 runs. The resulting candidate set is orthogonal and
balanced.

data l36; /* a1-a11 - two-level, b1-b12 - three-level */
input (a1-a11 b1-b12) (23*1.) @@;
if mod(_n_, 3) = 0 then input;
datalines;

111111111112223322321121111111111133311331322311111111111111221121331
212111222122222121212232121112221233332323233121211122212111131313112
221211122212232213122322212111222133133212331322121112221112113231121
122121112222211232233221221211122233223133113312212111222113312112211
212212111222311223312112122121112231223311232221221211122123311223133
221221211122313131111322212212111231212122221322122121112123232333321
222122121112322112133112221221211131332232112222212212111121133132233
122212212112331311221211222122121131121223323212221221211122323311313
112221221212131322113331122212212132121332211111222122121132321133222
111222122122132231331131112221221232133121122111122212212132112322332
211122212212113113323232111222122132212211313121112221221133233221212
121112221222123333232311211122212232311113131212111222122131222212123
;

150

data cand1(drop=a: b: i);
set l36;
x16 = a1; x17 = a2;
array x[12]; array b[12];
do i = 1 to 12; x[i] = b[i]; end;
do x13 = 1 to 3;

do x14 = 1 to 4;
do x15 = 1 to 3;

output;
end;

end;
end;

run;

For each of the 36 input observations, the 36 combinations of x13, x14, and x15 are created and output, creating
a total of 1296 possible choice sets in the candidate set. Next, we use the %MKTDES macro to run only PROC
OPTEX. It prints some generated PROC FACTEX code even though it does not run it.

%mktdes(factors=x1-x13 x15=3 x14=4 x16 x17=2,
run=optex, n=36, procopts=seed=7654321)

This step took 14 seconds and produced the following results.

Vacation Example with Asymmetry

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 98.8874 97.5943 95.3827 0.9837
2 98.8874 97.5943 95.3827 0.9837
3 98.4728 96.6825 92.1954 0.9884
4 98.2861 96.3742 90.7878 0.9899
5 98.2861 96.1470 91.7095 0.9911

The best design has an efficiency of 98.8874, which is quite a bit better than the previous high of 86.1054. While
there is no guarantee that this approach will be better than other approaches, these results are not surprising. The
L36 is a very good, specialized design, and crossing it with a full-factorial design does nothing to diminish its
goodness. Also, the size of the candidate set, 1296, is very reasonable, so we would not expect search time or
local optima to be serious problems.

151

Ensuring that Certain Key Interactions are Estimable
Next, we will ensure that certain key interactions are estimable. Specifically, it might be good if in the aggre-
gate the interactions between price and accommodations were estimable for each destination. We would like
the following interactions to be estimable: x1*x11 x2*x12 x3*x13 x4*x15 x5*x15. We will use the
%MKTDES macro in two steps to find a design. Recall that when we first used a two-step approach, we used the
following code.

%mktdes(factors=x1-x13 x15=3, run=factex, step=1)
%mktdes(factors=x14=4 x16 x17=2, run=factex optex, step=2, n=36,

procopts=seed=7654321)

This time, we will add to the first step an interact=x1*x11 x2*x12 x3*x13 x5*x15 option naming
the interactions that we want to be estimable. We did not specify x4*x14 yet since x14 is not created in the
first step. In the second step, we specify our remaining interaction, otherint=x4*x14. The otherint=
option is used for interactions that are composed of factors created in different steps. Interactions that appear
in interact= appear in the PROC FACTEX and PROC OPTEX model statements. In contrast, interactions
that appear in otherint= appear only in the PROC OPTEX model statement. The option n=saturated is
specified so that PROC OPTEX will create the smallest possible design. This is an easy way for you to find out
what the smallest size is without doing all the parameter calculations.

%mktdes(factors=x1-x13 x15=3, run=factex, step=1,
interact=x1*x11 x2*x12 x3*x13 x5*x15)

%mktdes(factors=x14=4 x16 x17=2, run=factex optex, step=2,
otherint=x4*x14, n=saturated, procopts=seed=7654321)

PROC OPTEX tells us NOTE: Number of design points set to 56. The number of parameters
is 1 for the intercept, 14� (3�1)+(4�1)+2� (2�1) = 33 for main effects, and 4� (3�1)� (3�1)+(4�
1)� (3� 1) = 22 for interactions for a total of 1+33+22 = 56 parameters. So we need at least 56 choice sets,
and ideally for this design with 2, 3, and 4 level factors, we would like the number sets to be divisible by 2� 2,
2� 3, 2� 4, 3� 3, and 3� 4. Sixty is divisible by 2, 3, 4, 6, and 12 so is a reasonable design size. Sixty choice
sets could be divided into three blocks of size 20, four blocks of size 15, or five blocks of size 12. Seventy-two
choices sets would be better since unlike 60, 72 can be divided by 9. Unfortunately, 72 would require one more
block.

We can also run the %MKTRUNS macro to help us choose the number of choice sets. However, the %MKT-
RUNS does not have a special syntax for interactions, you have to specify the main effects and interactions of two
factors as if it were a single factor. So for example, for the interaction of 2 three-level factors, you specify 9 in the
list. For the interaction of a three-level factor and a four-level factor, you specify 12 in the list. Do not specify “3
3 9” or “3 4 12”; just specify “3” and “12”. In this example we specify four 9’s for the four accommodation/price
interactions involving only three-level factors, one 12 for the California accommodation/price interaction, five
3’s for scenery, and two 2’s for the side trips. We also specified a keyword option max= to consider only the 45
design sizes from the minimum 56 up to 100.

%mktruns(9 9 9 9 12 3 3 3 3 3 2 2, max=45)

152

Vacation Example with Asymmetry

Some Reasonable
Design Sizes Cannot Be

(Saturated=56) Violations Divided By

72 30 81 108 27
81 33 12 108 36 2 18 24 6 4
90 39 81 12 108 27 36 24 4
96 57 9 81 108 27 36 18
60 59 9 81 108 27 36 18 24
63 59 81 12 108 27 36 2 18 24 6 4
84 59 9 81 108 27 36 18 24
99 59 81 12 108 27 36 2 18 24 6 4
66 61 9 81 12 108 27 36 18 24 4
78 61 9 81 12 108 27 36 18 24 4

We see that 72 cannot be divided by 81 = 9� 9 so for example the Mexico accommodation/price combinations
cannot occur with equal frequency with each of the Hawaii accommodation/price combinations. We see that 72
cannot be divided by 108 = 9 � 12 so for example the California accommodation/price combinations cannot
occur with equal frequency with each of the Maine accommodation/price combinations. With interactions, there
are many higher-order opportunities for nonorthogonality. However, usually we will not be overly concerned
about potential unequal frequencies on combinations of attributes in different alternatives.

We will run the %MKTDES macro again with n=60 specified.

%mktdes(factors=x1-x13 x15=3, run=factex, step=1,
interact=x1*x11 x2*x12 x3*x13 x5*x15)

%mktdes(factors=x14=4 x16 x17=2, run=factex optex, step=2,
otherint=x4*x14, n=60, procopts=seed=7654321)

The candidate set has 81� 8 = 648 candidates, and the D-efficiency of the best design is 80.3563. Since making
a candidate set six times bigger should not be a problem, we can run again with size=243 and size=16.

%mktdes(factors=x1-x13 x15=3, run=factex, step=1, size=243,
interact=x1*x11 x2*x12 x3*x13 x5*x15)

%mktdes(factors=x14=4 x16 x17=2, run=factex optex, step=2, size=16,
otherint=x4*x14, n=60, procopts=seed=7654321)

The candidate set has 243� 16 = 3888 candidates, and the D-efficiency of the best design is 77.4934. Since this
is worse than we saw previously, we could try again with size=243 and size=8.

%mktdes(factors=x1-x13 x15=3, run=factex, step=1, size=243,
interact=x1*x11 x2*x12 x3*x13 x5*x15)

%mktdes(factors=x14=4 x16 x17=2, run=factex optex, step=2, size=8,
otherint=x4*x14, n=60, procopts=seed=7654321)

The candidate set has 243� 8 = 1944 candidates, and the D-efficiency of the best design is 76.3911. Since this
is worse than we saw previously, we could try again with size=81 and size=16.

%mktdes(factors=x1-x13 x15=3, run=factex, step=1, size=81,
interact=x1*x11 x2*x12 x3*x13 x5*x15)

%mktdes(factors=x14=4 x16 x17=2, run=factex optex, step=2, size=16,
otherint=x4*x14, n=60, procopts=seed=7654321)

The candidate set has 81 � 16 = 1296 candidates, and the D-efficiency of the best design is 80.8125. This is
better than we saw previously. We could try again with more iterations.

%mktdes(factors=x1-x13 x15=3, run=factex, step=1, size=81,
interact=x1*x11 x2*x12 x3*x13 x5*x15)

%mktdes(factors=x14=4 x16 x17=2, run=factex optex, step=2, size=16, iter=20,
otherint=x4*x14, n=60, procopts=seed=072555)

153

This gave us a small gain in D-efficiency, 81.3949. This step took 2 minutes and 15 seconds.

Examining the Design
We can use PROC SUMMARY and PROC FREQ as a first step in evaluating the goodness of this design.

proc summary data=design;
class _all_;
ways 1 17;
output out=sum;
run;

proc print; by _type_; run;

proc freq;
tables x1*x11 x2*x12 x3*x13 x4*x14 x5*x15;
run;

Vacation Example, Strategies for Big Designs

----------------------------------- _TYPE_=1 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

1 1 30
2 2 30

----------------------------------- _TYPE_=2 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

3 1 . 31
4 2 . 29

----------------------------------- _TYPE_=4 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

5 1 . . 17
6 2 . . 14
7 3 . . 15
8 4 . . 14

----------------------------------- _TYPE_=8 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

9 1 . . . 19
10 2 . . . 21
11 3 . . . 20

---------------------------------- _TYPE_=16 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

12 1 20
13 2 20
14 3 20

---------------------------------- _TYPE_=32 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

15 1 21
16 2 20
17 3 19

154

---------------------------------- _TYPE_=64 -----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

18 1 21
19 2 20
20 3 19

---------------------------------- _TYPE_=128 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

21 1 20
22 2 21
23 3 19

---------------------------------- _TYPE_=256 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

24 1 21
25 2 19
26 3 20

---------------------------------- _TYPE_=512 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

27 1 21
28 2 19
29 3 20

--------------------------------- _TYPE_=1024 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

30 1 20
31 2 20
32 3 20

--------------------------------- _TYPE_=2048 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

33 1 19
34 2 19
35 3 22

--------------------------------- _TYPE_=4096 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

36 1 20
37 2 20
38 3 20

--------------------------------- _TYPE_=8192 ----------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

39 . . . 1 20
40 . . . 2 20
41 . . . 3 20

--------------------------------- _TYPE_=16384 ---------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

42 . . 1 21
43 . . 2 19
44 . . 3 20

155

--------------------------------- _TYPE_=32768 ---------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

45 . 1 19
46 . 2 21
47 . 3 20

--------------------------------- _TYPE_=65536 ---------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

48 1 19
49 2 19
50 3 22

-------------------------------- _TYPE_=131071 ---------------------------------

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x15 x14 x16 x17 _FREQ_

51 1 1 1 2 3 3 3 3 3 3 3 3 1 3 3 2 2 1
52 1 1 1 3 2 2 2 2 2 2 2 2 1 2 3 2 1 1
53 1 1 2 1 3 3 3 3 3 3 3 2 3 2 2 1 1 1
54 1 1 2 3 1 1 1 1 1 1 1 3 3 3 3 2 2 1
55 1 1 3 1 2 2 2 2 2 2 2 3 2 3 3 1 2 1
56 1 1 3 2 1 1 1 1 1 1 1 2 2 2 4 1 1 1
57 1 2 1 1 3 3 3 2 2 2 1 3 3 3 4 1 1 1
58 1 2 1 3 1 1 1 3 3 3 2 1 3 1 1 2 2 1
59 1 2 2 1 2 2 2 1 1 1 3 1 2 1 4 1 2 1
60 1 2 2 2 1 1 1 3 3 3 2 3 2 3 3 1 1 1
61 1 2 3 2 3 3 3 2 2 2 1 1 1 1 3 2 2 1
62 1 2 3 3 2 2 2 1 1 1 3 3 1 3 1 2 1 1
63 1 3 1 1 2 2 2 3 3 3 1 2 2 2 1 1 2 1
64 1 3 1 2 1 1 1 2 2 2 3 1 2 1 1 1 1 1
65 1 3 1 3 3 3 3 1 1 1 2 3 2 3 4 1 2 1
66 1 3 2 2 3 3 3 1 1 1 2 2 1 2 1 2 2 1
67 1 3 2 3 2 2 2 3 3 3 1 1 1 1 4 2 1 1
68 1 3 3 1 3 3 3 1 1 1 2 1 3 1 1 2 1 1
69 1 3 3 3 1 1 1 2 2 2 3 2 3 2 4 2 2 1
70 2 1 1 1 3 2 1 3 2 1 3 3 3 2 1 2 1 1
71 2 1 1 3 1 3 2 1 3 2 1 1 3 3 2 2 2 1
72 2 1 2 1 2 1 3 2 1 3 2 1 2 3 1 2 2 1
73 2 1 2 2 1 3 2 1 3 2 1 3 2 2 1 1 1 1
74 2 1 3 1 1 3 2 1 3 2 1 2 1 1 1 1 1 1
75 2 1 3 2 3 2 1 3 2 1 3 1 1 3 1 1 2 1
76 2 1 3 3 2 1 3 2 1 3 2 3 1 2 2 1 1 1
77 2 2 1 1 2 1 3 1 3 2 3 2 2 1 3 2 2 1
78 2 2 1 2 1 3 2 3 2 1 2 1 2 3 4 1 1 1
79 2 2 2 2 3 2 1 2 1 3 1 2 1 1 4 1 2 1
80 2 2 2 3 2 1 3 1 3 2 3 1 1 3 3 1 1 1
81 2 2 3 1 3 2 1 2 1 3 1 1 3 3 3 2 1 1
82 2 2 3 3 1 3 2 3 2 1 2 2 3 1 3 2 2 1
83 2 3 1 2 3 2 1 1 3 2 2 3 1 2 2 1 2 1
84 2 3 1 3 2 1 3 3 2 1 1 2 1 1 1 1 1 1
85 2 3 2 1 3 2 1 1 3 2 2 2 3 1 4 2 1 1
86 2 3 2 3 1 3 2 2 1 3 3 3 3 2 1 2 2 1
87 2 3 3 1 2 1 3 3 2 1 1 3 2 2 4 2 2 1
88 2 3 3 2 1 3 2 2 1 3 3 2 2 1 2 1 1 1
89 3 1 1 1 2 3 1 2 3 1 2 2 2 3 4 2 2 1
90 3 1 1 2 1 2 3 1 2 3 1 1 2 2 2 2 1 1
91 3 1 2 2 3 1 2 3 1 2 3 2 1 3 2 2 2 1
92 3 1 2 3 2 3 1 2 3 1 2 1 1 2 1 1 1 1
93 3 1 3 1 3 1 2 3 1 2 3 1 3 2 4 1 1 1
94 3 1 3 3 1 2 3 1 2 3 1 2 3 3 1 1 2 1
95 3 2 1 1 1 2 3 3 1 2 2 1 1 2 2 2 2 1
96 3 2 1 2 3 1 2 2 3 1 1 3 1 1 1 1 2 1
97 3 2 1 3 2 3 1 1 2 3 3 2 1 3 2 1 1 1
98 3 2 2 1 3 1 2 2 3 1 1 2 3 3 2 1 1 1
99 3 2 2 2 2 3 1 1 2 3 3 1 3 2 2 1 2 1

100 3 2 2 3 1 2 3 3 1 2 2 3 3 1 2 1 2 1
101 3 2 3 1 2 3 1 1 2 3 3 3 2 1 2 2 2 1
102 3 2 3 2 1 2 3 3 1 2 2 2 2 3 1 2 1 1
103 3 2 3 3 3 1 2 2 3 1 1 1 2 2 2 2 1 1
104 3 3 1 1 3 1 2 1 2 3 2 3 3 1 3 1 1 1
105 3 3 1 2 2 3 1 3 1 2 1 2 3 3 3 1 1 1
106 3 3 1 3 1 2 3 2 3 1 3 1 3 2 3 1 2 1
107 3 3 2 1 2 3 1 3 1 2 1 1 2 2 3 2 2 1
108 3 3 2 2 1 2 3 2 3 1 3 3 2 1 4 2 1 1
109 3 3 3 2 3 1 2 1 2 3 2 1 1 2 4 2 2 1
110 3 3 3 3 2 3 1 3 1 2 1 3 1 1 3 1 1 1

156

Table of x1 by x11

Frequency|
Percent |
Row Pct |
Col Pct | 1| 2| 3| Total
---------+--------+--------+--------+

1 | 6 | 7 | 6 | 19
| 10.00 | 11.67 | 10.00 | 31.67
| 31.58 | 36.84 | 31.58 |
| 28.57 | 35.00 | 31.58 |

---------+--------+--------+--------+
2 | 7 | 6 | 6 | 19

| 11.67 | 10.00 | 10.00 | 31.67
| 36.84 | 31.58 | 31.58 |
| 33.33 | 30.00 | 31.58 |

---------+--------+--------+--------+
3 | 8 | 7 | 7 | 22

| 13.33 | 11.67 | 11.67 | 36.67
| 36.36 | 31.82 | 31.82 |
| 38.10 | 35.00 | 36.84 |

---------+--------+--------+--------+
Total 21 20 19 60

35.00 33.33 31.67 100.00

Table of x2 by x12

x2 x12

Frequency|
Percent |
Row Pct |
Col Pct | 1| 2| 3| Total
---------+--------+--------+--------+

1 | 6 | 7 | 6 | 19
| 10.00 | 11.67 | 10.00 | 31.67
| 31.58 | 36.84 | 31.58 |
| 28.57 | 35.00 | 31.58 |

---------+--------+--------+--------+
2 | 9 | 6 | 6 | 21

| 15.00 | 10.00 | 10.00 | 35.00
| 42.86 | 28.57 | 28.57 |
| 42.86 | 30.00 | 31.58 |

---------+--------+--------+--------+
3 | 6 | 7 | 7 | 20

| 10.00 | 11.67 | 11.67 | 33.33
| 30.00 | 35.00 | 35.00 |
| 28.57 | 35.00 | 36.84 |

---------+--------+--------+--------+
Total 21 20 19 60

35.00 33.33 31.67 100.00

Table of x3 by x13

x3 x13

Frequency|
Percent |
Row Pct |
Col Pct | 1| 2| 3| Total
---------+--------+--------+--------+

1 | 7 | 7 | 7 | 21
| 11.67 | 11.67 | 11.67 | 35.00
| 33.33 | 33.33 | 33.33 |
| 35.00 | 35.00 | 35.00 |

---------+--------+--------+--------+
2 | 6 | 6 | 7 | 19

| 10.00 | 10.00 | 11.67 | 31.67
| 31.58 | 31.58 | 36.84 |
| 30.00 | 30.00 | 35.00 |

---------+--------+--------+--------+
3 | 7 | 7 | 6 | 20

| 11.67 | 11.67 | 10.00 | 33.33
| 35.00 | 35.00 | 30.00 |
| 35.00 | 35.00 | 30.00 |

---------+--------+--------+--------+
Total 20 20 20 60

33.33 33.33 33.33 100.00

157

Table of x4 by x14

x4 x14

Frequency|
Percent |
Row Pct |
Col Pct | 1| 2| 3| 4| Total
---------+--------+--------+--------+--------+

1 | 5 | 4 | 5 | 6 | 20
| 8.33 | 6.67 | 8.33 | 10.00 | 33.33
| 25.00 | 20.00 | 25.00 | 30.00 |
| 29.41 | 28.57 | 33.33 | 42.86 |

---------+--------+--------+--------+--------+
2 | 6 | 5 | 4 | 5 | 20

| 10.00 | 8.33 | 6.67 | 8.33 | 33.33
| 30.00 | 25.00 | 20.00 | 25.00 |
| 35.29 | 35.71 | 26.67 | 35.71 |

---------+--------+--------+--------+--------+
3 | 6 | 5 | 6 | 3 | 20

| 10.00 | 8.33 | 10.00 | 5.00 | 33.33
| 30.00 | 25.00 | 30.00 | 15.00 |
| 35.29 | 35.71 | 40.00 | 21.43 |

---------+--------+--------+--------+--------+
Total 17 14 15 14 60

28.33 23.33 25.00 23.33 100.00

Table of x5 by x15

x5 x15

Frequency|
Percent |
Row Pct |
Col Pct | 1| 2| 3| Total
---------+--------+--------+--------+

1 | 7 | 7 | 6 | 20
| 11.67 | 11.67 | 10.00 | 33.33
| 35.00 | 35.00 | 30.00 |
| 36.84 | 33.33 | 30.00 |

---------+--------+--------+--------+
2 | 6 | 7 | 7 | 20
| 10.00 | 11.67 | 11.67 | 33.33
| 30.00 | 35.00 | 35.00 |
| 31.58 | 33.33 | 35.00 |

---------+--------+--------+--------+
3 | 6 | 7 | 7 | 20
| 10.00 | 11.67 | 11.67 | 33.33
| 30.00 | 35.00 | 35.00 |
| 31.58 | 33.33 | 35.00 |

---------+--------+--------+--------+
Total 19 21 20 60

31.67 35.00 33.33 100.00

The frequencies look good and each choice set appears only once.

We can use PROC OPTEX to evaluate an existing design and print additional information such as the information
matrix. The options method=sequential and initdesign= are used to evaluate an existing design. With
an initial design, the sequential algorithm has nothing to do, so the efficiency and optionally other characteristics
of the existing design are printed.

proc optex data=cand2;
title2 ’Evaluating the Efficiency of a Given Design’;
class x1-x17 / param=orthref;
model x1-x17 x1*x11 x2*x12 x3*x13 x4*x14 x5*x15;
generate method=sequential initdesign=design;
examine i;
run; quit;

In the interest of space, the results from this step are not shown.

158

Blocking an Existing Design
An existing design is blocked as follows.

proc optex data=design seed=72343;
title2 ’Design with Interactions, 60-Runs’;
title3 ’Blocking an Existing Design’;
class x1-x17 / param=orthref;
model x1-x17 x1*x11 x2*x12 x3*x13 x4*x14 x5*x15;
generate initdesign=design method=sequential;
blocks structure=(3)20 init=chain noexchange iter=1;
output out=sasuser.blckdes;
run; quit;

This step took 21 seconds. The goal is to take the observations in an existing design and optimally sort them into
blocks. No swapping between the candidate set and the design is performed. The generate statement options
initdesign=design and method=sequential name the design to block, DESIGN, and the sequential
method since no swapping in and out is performed. The blocks statement option structure= asks for 3
blocks of size 20, init=chain specifies no swapping from the candidate set during the initialization, and
noexchange specifies no swapping from the candidate set during the iterations.

The table shows the frequencies for the different frequency patterns across blocks and factors. The design is
nearly balanced in most of the factors and blocks. Perfect balance is impossible for the three level factors.

Level
Frequency Frequency

8 12 2
9 11 3

10 10 1
3 8 9 1
4 7 9 1
4 8 8 1
5 6 9 3
5 7 8 15
6 6 8 11
6 7 7 10
4 4 5 7 1
4 4 6 6 2

Generating the Questionnaire
These next steps randomize SASUSER.BLCKDES, the blocked design we just created, within blocks and print
the questionnaire.

%let m = 6; /* m alternatives including constant */
%let mm1 = %eval(&m - 1); /* m - 1 */
%let n = 20; /* number of choice sets */
%let blocks = 3; /* number of blocks */

proc plan seed=7654321;
factors block=&blocks ordered set=&n / noprint;
output out=orders;
run; quit;

159

data sasuser.blckdes;
set orders;
set = (block - 1) * &n + set;
set sasuser.blckdes point=set;
run;

title;
options ls=80 ps=60 nonumber nodate;

data _null_;
array dests[&mm1] $ 10 _temporary_

(’Hawaii’ ’Alaska’ ’Mexico’ ’California’ ’Maine’);
array scenes[3] $ 13 _temporary_

(’the Mountains’ ’a Lake’ ’the Beach’);
array lodging[3] $ 15 _temporary_

(’Cabin’ ’Bed & Breakfast’ ’Hotel’);
array x[15];
array p[&mm1];
length price $ 6;
file print linesleft=ll;

set sasuser.blckdes;
by block;

p1 = 1499 + (x[11] - 2) * 250;
p2 = 1499 + (x[12] - 2) * 250;
p3 = 1249 + (x[13] - 2) * 250;
p4 = 1374 + (x[14] - 2.5) * 250;
p5 = 1249 + (x[15] - 2) * 250;

if first.block then do;
choice = 0;
put _page_;
put @50 ’Form: ’ block ’ Subject: ________’ //;
end;

choice + 1;

if ll < (19 + (x16 = 1) + (x17 = 1)) then put _page_;
put choice 2. ’) Circle your choice of ’

’vacation destinations:’ /;

do dest = 1 to &mm1;
price = left(put(p[dest], dollar6.));
put ’ ’ dest 1. ’) ’ dests[dest]

+(-1) ’, staying in a ’ lodging[x[dest]]
’near ’ scenes[x[&mm1 + dest]] +(-1) ’,’ /
+7 ’with a package cost of ’ price +(-1) @@;

if dest = 3 and x16 = 1 then
put ’, and an optional visit’ / +7

’to archaeological sites for an additional $100’ @@;
else if dest = 1 and x17 = 1 then

put ’, and an optional helicopter’ / +7
’flight to an active volcano for an additional $200’ @@;

put ’.’ /;
end;

put " &m) Stay at home this year." /;
run;

Here are the first two choice sets for the first subject.

160

Form: 1 Subject: ________

1) Circle your choice of vacation destinations:

1) Hawaii, staying in a Bed & Breakfast near the Beach,
with a package cost of $1,499.

2) Alaska, staying in a Bed & Breakfast near a Lake,
with a package cost of $1,499.

3) Mexico, staying in a Hotel near the Beach,
with a package cost of $1,499.

4) California, staying in a Hotel near a Lake,
with a package cost of $1,499.

5) Maine, staying in a Cabin near the Mountains,
with a package cost of $999.

6) Stay at home this year.

2) Circle your choice of vacation destinations:

1) Hawaii, staying in a Hotel near the Mountains,
with a package cost of $1,499.

2) Alaska, staying in a Hotel near a Lake,
with a package cost of $1,249.

3) Mexico, staying in a Hotel near the Mountains,
with a package cost of $999.

4) California, staying in a Bed & Breakfast near a Lake,
with a package cost of $1,749.

5) Maine, staying in a Hotel near the Beach,
with a package cost of $1,249.

6) Stay at home this year.

161

Generating Artificial Data
This next step generates an artificial set of data. Collecting data is time consuming and expensive. Generating
some artificial data before the data are collected to test your code and make sure the analysis will run is a good
idea. It helps avoid the “How am I going to analyze this?” question from occuring after the data have already
been collected. This step generates data for 300 subjects, 100 per block.

data _null_;
array dests[&mm1] _temporary_ (5 -1 4 3 2);
array scenes[3] _temporary_ (-1 0 1);
array lodging[3] _temporary_ (0 3 2);
array u[&m];
array x[15];

do rep = 1 to 100;
n = 0;
do i = 1 to &blocks;

k + 1;
if mod(k,3) = 1 then put;
put k 3. +1 i 1. +2 @@;
do j = 1 to &n; n + 1;

set sasuser.blckdes point=n;
do dest = 1 to &mm1;

u[dest] = dests[dest] + lodging[x[dest]] +
scenes[x[&mm1 + dest]] -
x[2 * &mm1 + dest] +
2 * normal(7);

end;

u[1] = u[1] + (x16 = 1);
u[3] = u[3] + (x17 = 1);
u&m = -3 + 3 * normal(7);
m = max(of u1-u&m);
if abs(u1 - m) < 1e-4 then c = 1;
else if abs(u2 - m) < 1e-4 then c = 2;
else if abs(u3 - m) < 1e-4 then c = 3;
else if abs(u4 - m) < 1e-4 then c = 4;
else if abs(u5 - m) < 1e-4 then c = 5;
else c = 6;
put +(-1) c @@;
end;

end;
end;

stop;
run;

The Dests, Scenes, and Lodging arrays are initialized with part-worth utilities for each level. The utilities for each
of the destinations are computed and stored in the array u in the statement u[dest] = ..., which includes
an error term 2 * normal(7). The utilities for the side trips are added in separately with u[1] = u[1]
+ (x16 = 1) and u[3] = u[3] + (x17 = 1). The utility for the stay at home alternative is -3 +
3 * normal(7). The maximum utility is computed, m = max(of u1-u&m) and the alternative with the
maximum utility is chosen. The put statement writes out the results to the log.

162

Reading, Processing, and Analyzing the Data
The results from the previous step are pasted into a DATA step and run to mimic reading real input data.

title ’Vacation Example with Asymmetry’;

data results;
input Subj Form (choose1-choose&n) (1.) @@;
datalines;

1 1 13113435444151313134 2 2 43331151114114133313 3 3 13331111451411131133
4 1 11113133144113311114 5 2 31415434431113453111 6 3 13133111341343151311
7 1 15413435141111133134 8 2 33115411141111413113 9 3 15153113431113131311

.

.

.
;

The analysis proceeds in a fashion similar to before. Formats and the key to processing the design are created.

proc format;
value price 1 = ’ 999’ 2 = ’1249’ 3 = ’1499’ 4 = ’1749’;
value scene 1 = ’Mountains’ 2 = ’Lake’ 3 = ’Beach’;
value lodge 1 = ’Cabin’ 2 = ’Bed & Breakfast’ 3 = ’Hotel’;
value side 1 = ’Side Trip’ 2 = ’No’;
run;

data key;
input Place $ 1-10 (Lodge Scene Price Side) ($);
datalines;

Hawaii x1 x6 x11 x16
Alaska x2 x7 x12 .
Mexico x3 x8 x13 x17
California x4 x9 x14 .
Maine x5 x10 x15 .
.
;

For analysis, the design will have five attributes. Place is the alternative name. Lodge, Scene, Price and
Side are created from the design using the indicated factors. See page 122 for more information on creating
the design key. Notice that Side only applies to some of the alternatives and hence has missing values for the
others. Processing the design and merging it with the data is similar to what was done on pages 122 and 124.
One difference is now there are asymmetries in Price. For Hawaii’s price, x11, we need to map 1, 2, 3 to
$1249, $1499, $1749; for Alaska’s price, x12, we need to map 1, 2, 3 to $1249, $1499, $1749; for Mexico’s
price, x13, we need to map 1, 2, 3 to $999, $1249, $1499; for California’s price, x14, we need to map 1, 2, 3,
4 to $999, $1249, $1499, $1749; for Maine’s price, x11, we need to map 1, 2, 3 to $999, $1249, $1499. We can
simplify the problem by adding 1 to x11 and x12, the factors that start at $1249 instead of $999, then we can
use a common format to set the price.

163

data temp;
set sasuser.blckdes;
x11 + 1;
x12 + 1;
run;

%mktroll(design=temp, key=key, alt=place, out=rolled)

%mktmerge(design=rolled, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choose1-choose&n,
stmts=%str(price = input(put(price, price.), 5.);

format scene scene. lodge lodge. side side.;))

proc print data=res2(obs=18); run;

Here are the first three choice sets.

Vacation Example with Asymmetry

Obs Subj Form Set Place Lodge Scene Price Side c

1 1 1 1 Hawaii Bed & Breakfast Beach 1499 No 1
2 1 1 1 Alaska Bed & Breakfast Lake 1499 . 2
3 1 1 1 Mexico Hotel Beach 1499 No 2
4 1 1 1 California Hotel Lake 1499 . 2
5 1 1 1 Maine Cabin Mountains 999 . 2
6 1 1 1 2

7 1 1 2 Hawaii Hotel Mountains 1499 No 2
8 1 1 2 Alaska Hotel Lake 1249 . 2
9 1 1 2 Mexico Hotel Mountains 999 No 1

10 1 1 2 California Bed & Breakfast Lake 1749 . 2
11 1 1 2 Maine Hotel Beach 1249 . 2
12 1 1 2 2

13 1 1 3 Hawaii Cabin Mountains 1499 Side Trip 1
14 1 1 3 Alaska Bed & Breakfast Mountains 1749 . 2
15 1 1 3 Mexico Bed & Breakfast Beach 1249 Side Trip 2
16 1 1 3 California Bed & Breakfast Beach 1499 . 2
17 1 1 3 Maine Cabin Beach 1499 . 2
18 1 1 3 2

Indicator variables and labels are created using PROC TRANSREG like before.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)

class(price scene lodge / zero=none order=formatted)
class(place * side / zero=’ ’ ’No’ separators=’’ ’ ’) / lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
id subj set form c;
run;

proc print data=coded(obs=6) label;
run;

The design=5000 option specifies that no model is fit; the procedure is just being used to code a design in
blocks of 5000 observations at a time. The nozeroconstant option specifies that if a constant variable is
created by the coding, it is not to be zeroed. The norestoremissing option specifies that missing values
should not be restored when the out= data set is created. The model statement names the variables to code
and provides information about how they are to be coded. The specification class(place / zero=none
order=data) specifies that the variable Place is a classification variable and requests a binary coding. The
zero=none option specifies that one binary variable should be created for all categories. The order=data

164

option sorts the values into the order they were first encountered in the data set. Similarly, the variables Price,
Scene, and Lodge are classification variables. The specification class(place * side / zero=’ ’
’No’ separators=” ’ ’) creates alternative-specific side effects. The option zero=’ ’ ’No’ speci-
fies that dummy variables should be created for all levels of Place except blank, and all levels of Side except
’No’. The separators= option (explained in more detail on page 172) allows you to specify two label com-
ponent separators for the main effect and interaction terms, respectively. By specifying a blank for the second
value, we request labels for the side trip effects like “Mexico Side Trip” instead of the default “Mexico * Side
Trip”.

The lprefix=0 option specifies that when labels are created for the binary variables, zero characters of the
original variable name should be used as a prefix. This means that the labels are created only from the level
values. An output statement names the output data set and drops variables that are not needed. Finally, the id
statement names the additional variables that we want copied from the input to the output data set.

Vacation Example with Asymmetry

Obs Hawaii Alaska Mexico California Maine 999 1249 1499 1749 Beach Lake

1 1 0 0 0 0 0 0 1 0 1 0
2 0 1 0 0 0 0 0 1 0 0 1
3 0 0 1 0 0 0 0 1 0 1 0
4 0 0 0 1 0 0 0 1 0 0 1
5 0 0 0 0 1 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0

Alaska Hawaii Maine Mexico
Bed & Side California Side Side Side

Obs Mountains Breakfast Cabin Hotel Trip Side Trip Trip Trip Trip

1 0 1 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0
5 1 0 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0

Obs Place Price Scene Lodge Side Subj Set Form c

1 Hawaii 1499 Beach Bed & Breakfast No 1 1 1 1
2 Alaska 1499 Lake Bed & Breakfast . 1 1 1 2
3 Mexico 1499 Beach Hotel No 1 1 1 2
4 California 1499 Lake Hotel . 1 1 1 2
5 Maine 999 Mountains Cabin . 1 1 1 2
6 1 1 1 2

The PROC PHREG specification is the same as we have seen before. (Recall that we used %phchoice(on)
on page 71 to customize the output from PROC PHREG.)

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

165

proc freq;
tables event * censored / list;
where n(stratum);
run;

Here are the results.

Vacation Example with Asymmetry

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 21501.114 10600.873
AIC 21501.114 10628.873
SBC 21501.114 10722.666

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 10900.2405 14 <.0001
Score 10070.1027 14 <.0001
Wald 4295.0918 14 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 3.74345 0.24610 231.3706 <.0001
Alaska 1 -0.98353 0.29398 11.1930 0.0008
Mexico 1 2.28200 0.25137 82.4127 <.0001
California 1 1.73953 0.25052 48.2158 <.0001
Maine 1 0.96882 0.25545 14.3842 0.0001

999 1 1.98569 0.07826 643.7935 <.0001
1249 1 1.33922 0.06689 400.8888 <.0001
1499 1 0.61453 0.06335 94.0995 <.0001
1749 0 0 . . .

Beach 1 1.40373 0.05181 733.9404 <.0001
Lake 1 0.73358 0.05306 191.1124 <.0001
Mountains 0 0 . . .

166

Bed & Breakfast 1 0.66600 0.04334 236.1449 <.0001
Cabin 1 -1.50871 0.05375 787.7420 <.0001
Hotel 0 0 . . .

Alaska Side Trip 0 0 . . .
California Side Trip 0 0 . . .
Hawaii Side Trip 1 0.65428 0.06331 106.7980 <.0001
Maine Side Trip 0 0 . . .
Mexico Side Trip 1 0.85246 0.06886 153.2310 <.0001

Vacation Example with Asymmetry

The FREQ Procedure

Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
--

1 5 6000 100.00 6000 100.00

You would not expect the part-worth utilities to match those that were used to generate the data, but you would
expect a similar ordering within each factor, and in fact that does occur. These data can also be analyzed with
quantitative price effects and destination by attribute interactions, as in the previous vacation example.

Aggregating the Data
This data set is rather large with 36,000 observations. You can make the analysis run faster and with less memory
by aggregating. Instead of stratifying on each choice set and subject combination, you can stratify just on choice
set and specify the number of times each alternative was chosen or unchosen. First, use PROC SUMMARY to
count the number of times each observation occurs. Specify all the analysis variables, and in this example, also
specify Form. The variable Form was added to the list because Set designates choice set within form. It is the
Form and Set combinations that identify the choice sets. (In the previous PROC PHREG step, since the Subj
* Set combinations uniquely identified each stratum, Form was not needed.) PROC SUMMARY is used to
store the number of times each unique observation appears in the variable -freq- . Then PROC PHREG is
run with a freq statement. Now, instead of analyzing a data set with 36,000 observations and 6000 strata, we
analyze a data set with 600 observations and 60 strata.

proc summary data=coded nway;
class form set c &_trgind;
output out=agg(drop=_type_);
run;

proc phreg data=agg;
model c*c(2) = &_trgind / ties=breslow;
freq _freq_;
strata form set;
run;

PROC SUMMARY ran in three seconds, and PROC PHREG ran in under one second. The parameter estimates
and Chi-Square statistics (not shown) are the same as before. The summary table shows the results of the
aggregation, 100 out of 600 alternatives were chosen in each stratum. The log likelihood statistics are different,
but that does not matter since the Chi-Square statistics are the same. The next example provides more information
about this.

167

Vacation Example with Asymmetry

The PHREG Procedure

Model Information

Data Set WORK.AGG
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable _FREQ_
Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Form Set Alternatives Alternatives Chosen

1 1 1 600 100 500
2 1 2 600 100 500
3 1 3 600 100 500
.
.
.

59 3 59 600 100 500
60 3 60 600 100 500

Total 36000 6000 30000

168

Brand Choice Example With Aggregate Data
In this next example, subjects were presented with brands of a product at different prices. There were four brands
and a constant alternative, eight choice sets, and 100 subjects. This example shows how to handle data that come
to you already aggregated. It also illustrates comparing the fits of two competing models, the mother logit model,
cross effects, IIA, and techniques for handling large data sets. The choice sets, with the price of each alternative
and the number of times it was chosen in parentheses, are shown next.

Set Brand 1 Brand 2 Brand 3 Brand 4 Other
1 $3.99 (4) $5.99 (29) $3.99 (16) $5.99 (42) $4.99 (9)
2 $5.99 (12) $5.99 (19) $5.99 (22) $5.99 (33) $4.99 (14)
3 $5.99 (34) $5.99 (26) $3.99 (8) $3.99 (27) $4.99 (5)
4 $5.99 (13) $3.99 (37) $5.99 (15) $3.99 (27) $4.99 (8)
5 $5.99 (49) $3.99 (1) $3.99 (9) $5.99 (37) $4.99 (4)
6 $3.99 (31) $5.99 (12) $5.99 (6) $3.99 (18) $4.99 (33)
7 $3.99 (37) $3.99 (10) $5.99 (5) $5.99 (35) $4.99 (13)
8 $3.99 (16) $3.99 (14) $3.99 (5) $3.99 (51) $4.99 (14)

The first choice set consists of Brand 1 at $3.99, Brand 2 at $5.99, Brand 3 at $3.99, Brand 4 at $5.99, and Other
at $4.99. From this choice set, Brand 1 was chosen 4 times, Brand 2 was chosen 29 times, Brand 3 was chosen
16 times, Brand 4 was chosen 42 times, and Other was chosen 9 times.

Processing the Data
As in the previous examples, we will process the data to create a data set with one stratum for each choice set
within each subject and m alternatives per stratum. This example will have 100 people times 5 alternatives times
8 choice sets equals 4000 observations. The first five observations are for the first subject and the first choice
set, the next five observations are for the second subject and the first choice set, ..., the next five observations are
for the one-hundredth subject and the first choice set, the next five observations are for the first subject and the
second choice set, and so on. Subject 1 in the first choice set is almost certainly not the same as subject 1 in
subsequent choice sets since we were given aggregate data. However, that is not important. What is important is
that we have a subject and choice set variable whose unique combinations identify each choice set within each
subject. In previous examples, we specified strata Subj Set with PROC PHREG, and our data were sorted
by choice set within subject. We can still use the same specification even though our data are now sorted by
subject within choice set. This next step reads and prepares the data.

%let m = 5; /* Number of Brands in Each Choice Set (including Other) */

title ’Brand Choice Example, Multinomial Logit Model’;

proc format;
value brand 1 = ’Brand 1’ 2 = ’Brand 2’ 3 = ’Brand 3’ 4 = ’Brand 4’

5 = ’Other’;
run;

data price;
array p[&m] p1-p&m; /* Prices for the Brands */
array f[&m] f1-f&m; /* Frequency of Choice */

input p1-p&m f1-f&m;
keep subj set brand price c p1-p&m;

* Store choice set and subject number to stratify;
Set = _n_; Subj = 0;

169

do i = 1 to &m; /* Loop over the &m frequencies */
do ci = 1 to f[i]; /* Loop frequency of choice times */

subj + 1; /* Subject within choice set */
do Brand = 1 to &m; /* Alternatives within choice set */

Price = p[brand];

* Output first choice: c=1, unchosen: c=2;
c = 2 - (i eq brand); output;
end;

end;
end;

format brand brand.;

datalines;
3.99 5.99 3.99 5.99 4.99 4 29 16 42 9
5.99 5.99 5.99 5.99 4.99 12 19 22 33 14
5.99 5.99 3.99 3.99 4.99 34 26 8 27 5
5.99 3.99 5.99 3.99 4.99 13 37 15 27 8
5.99 3.99 3.99 5.99 4.99 49 1 9 37 4
3.99 5.99 5.99 3.99 4.99 31 12 6 18 33
3.99 3.99 5.99 5.99 4.99 37 10 5 35 13
3.99 3.99 3.99 3.99 4.99 16 14 5 51 14
;

proc print data=price(obs=15);
var subj set c price brand;
run;

The inner loop do Brand = 1 to &m creates all of the observations for the m alternatives within a per-
son/choice set combination. Within a choice set (row of input data), the outer two loops, do i = 1 to &m
and do ci = 1 to f[i] execute the code inside 100 times, the variable Subj goes from 1 to 100. In the
first choice set, they first create the data for the four subjects that chose Brand 1, then the data for the 29 subjects
that chose Brand 2, and so on. Here are the first 15 observations of the data set.

Brand Choice Example, Multinomial Logit Model

Obs Subj Set c Price Brand

1 1 1 1 3.99 Brand 1
2 1 1 2 5.99 Brand 2
3 1 1 2 3.99 Brand 3
4 1 1 2 5.99 Brand 4
5 1 1 2 4.99 Other

6 2 1 1 3.99 Brand 1
7 2 1 2 5.99 Brand 2
8 2 1 2 3.99 Brand 3
9 2 1 2 5.99 Brand 4
10 2 1 2 4.99 Other
11 3 1 1 3.99 Brand 1
12 3 1 2 5.99 Brand 2
13 3 1 2 3.99 Brand 3
14 3 1 2 5.99 Brand 4
15 3 1 2 4.99 Other

Note that the data set also contains the variables p1-p5 which contain the prices of each of the alternatives.
These variables, which are used in constructing the cross effects, will be discussed in more detail on page 174.

170

proc print data=price(obs=5);
run;

Brand Choice Example, Multinomial Logit Model

Obs p1 p2 p3 p4 p5 Set Subj Brand Price c

1 3.99 5.99 3.99 5.99 4.99 1 1 Brand 1 3.99 1
2 3.99 5.99 3.99 5.99 4.99 1 1 Brand 2 5.99 2
3 3.99 5.99 3.99 5.99 4.99 1 1 Brand 3 3.99 2
4 3.99 5.99 3.99 5.99 4.99 1 1 Brand 4 5.99 2
5 3.99 5.99 3.99 5.99 4.99 1 1 Other 4.99 2

Simple Price Effects
The data are coded using PROC TRANSREG.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none) identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id subj set c;
run;

The design option specifies that no model is fit; the procedure is just being used to code a design. The
nozeroconstant option specifies that if a constant variable is created by the coding, it is not to be zeroed.
The norestoremissing option specifies that missing values should not be restored when the out= data
set is created. The model statement names the variables to code and provides information about how they
are to be coded. The specification class(brand / zero=none) specifies that the variable Brand is a
classification variable and requests a binary coding. The zero=none option specifies that one binary variable
should be created for all categories. The specification identity(price) specifies that the variable Price
is quantitative and hence should directly enter the model without coding. The lprefix=0 option specifies that
when labels are created for the binary variables, zero characters of the original variable name should be used as
a prefix. This means that the labels are created only from the level values. An output statement names the
output data set and drops variables that are not needed. Finally, the id statement names the additional variables
that we want copied from the input to the output data set.

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;
title2 ’Discrete Choice with Common Price Effect’;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

proc freq;
tables event * censored / list;
where n(stratum);
run;

Here are the results. (Recall that we used %phchoice(on) on page 71 to customize the output from PROC
PHREG.)

171

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 2575.101 2425.214
AIC 2575.101 2435.214
SBC 2575.101 2458.637

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 149.8868 5 <.0001
Score 153.2328 5 <.0001
Wald 142.9002 5 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 0.66727 0.12305 29.4065 <.0001
Brand 2 1 0.38503 0.12962 8.8235 0.0030
Brand 3 1 -0.15955 0.14725 1.1740 0.2786
Brand 4 1 0.98964 0.11720 71.2993 <.0001
Brand 5 0 0 . . .
Price 1 0.14966 0.04406 11.5379 0.0007

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect

The FREQ Procedure

Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
--

1 4 800 100.00 800 100.00

172

Alternative-Specific Price Effects
In the next steps, the multinomial logit model is coded and fit with brand by price effects. The PROC TRANS-
REG model statement has a vertical bar, “|”, between the class specification and the identity specification.
Since the zero=none option is specified with class, the vertical bar creates two sets of variables: five dummy
variables for the brand effects and five more variables for the brand by price interactions.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none separators=’’ ’ ’) |

identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id subj set c;
run;

The separators= option allows you to specify two label component separators as quoted strings. The spec-
ification separators=” ’ ’ (separators= quote quote space quote space quote) specifies a null string
(quote quote) and a blank (quote space quote). The separators=” ’ ’ option in the class specification
specifies the separators that are used to construct the labels for the main effect and interaction terms, respec-
tively. By default, the alternative-specific price effects � the brand by price interactions � would have labels
like “Brand 1 * Price” since the default second value for separators= is ’ * ’ (a quoted space asterisk
space). Specifying ’ ’ (a quoted space) as the second value creates labels of the form “Brand 1 Price”. Since
lprefix=0, the main-effects separator, which is the first separators= value, ” (quote quote), is ignored.
Zero name or input variable label characters are used to construct the label. The label is simply the formatted
value of the class variable.

proc print data=coded(obs=10) label;
title2 ’Discrete Choice with Brand by Price Effects’;
var subj set c brand price &_trgind;
run;

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

proc freq;
tables event * censored / list;
where n(stratum);
run;

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects

Brand Brand Brand Brand
Obs Subj Set c Brand Price 1 2 3 4

1 1 1 1 Brand 1 3.99 1 0 0 0
2 1 1 2 Brand 2 5.99 0 1 0 0
3 1 1 2 Brand 3 3.99 0 0 1 0
4 1 1 2 Brand 4 5.99 0 0 0 1
5 1 1 2 Other 4.99 0 0 0 0

6 2 1 1 Brand 1 3.99 1 0 0 0
7 2 1 2 Brand 2 5.99 0 1 0 0
8 2 1 2 Brand 3 3.99 0 0 1 0
9 2 1 2 Brand 4 5.99 0 0 0 1

10 2 1 2 Other 4.99 0 0 0 0

173

Brand 1 Brand 2 Brand 3 Brand 4 Other
Obs Other Price Price Price Price Price

1 0 3.99 0.00 0.00 0.00 0.00
2 0 0.00 5.99 0.00 0.00 0.00
3 0 0.00 0.00 3.99 0.00 0.00
4 0 0.00 0.00 0.00 5.99 0.00
5 1 0.00 0.00 0.00 0.00 4.99

6 0 3.99 0.00 0.00 0.00 0.00
7 0 0.00 5.99 0.00 0.00 0.00
8 0 0.00 0.00 3.99 0.00 0.00
9 0 0.00 0.00 0.00 5.99 0.00
10 1 0.00 0.00 0.00 0.00 4.99

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 2575.101 2424.812
AIC 2575.101 2440.812
SBC 2575.101 2478.288

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 150.2891 8 <.0001
Score 154.2563 8 <.0001
Wald 143.1425 8 <.0001

174

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 -0.00972 0.43555 0.0005 0.9822
Brand 2 1 -0.62230 0.48866 1.6217 0.2028
Brand 3 1 -0.81250 0.60318 1.8145 0.1780
Brand 4 1 0.31778 0.39549 0.6456 0.4217
Other 0 0 . . .

Brand 1 Price 1 0.13587 0.08259 2.7063 0.1000
Brand 2 Price 1 0.20074 0.09210 4.7512 0.0293
Brand 3 Price 1 0.13126 0.11487 1.3057 0.2532
Brand 4 Price 1 0.13478 0.07504 3.2255 0.0725
Other Price 0 0 . . .

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects

The FREQ Procedure

Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
--

1 4 800 100.00 800 100.00

The likelihood for this model is essentially the same as for the simpler, common-price-slope model fit pre-
viously, �2 log(LC) = 2425:214 compared to 2424.812. The null hypothesis that the two models are not
significantly different is tested by comparing the likelihoods for the two models. The difference between two
�2 log(LC)’s (the number reported under “With Covariates” in the output) has a chi-square distribution. The
degrees of freedom for the test is the difference between the two df for the two likelihoods. The difference
2425:214� 2424:812 = 0:402 is distributed �2 with 8� 5 = 3 df and is not statistically significant.

Mother Logit Model
This next step fits the so-called “mother logit” model. This step creates the full design matrix, including the
brand, price, and cross effects. A cross effect represents the effect of one alternative on the utility of another
alternative. First, let’s look at the first part of the input data set. The first five rows containing the first choice set
are printed.

proc print data=price(obs=5) label;
run;

Brand Choice Example, Multinomial Logit Model

Obs p1 p2 p3 p4 p5 Set Subj Brand Price c

1 3.99 5.99 3.99 5.99 4.99 1 1 Brand 1 3.99 1
2 3.99 5.99 3.99 5.99 4.99 1 1 Brand 2 5.99 2
3 3.99 5.99 3.99 5.99 4.99 1 1 Brand 3 3.99 2
4 3.99 5.99 3.99 5.99 4.99 1 1 Brand 4 5.99 2
5 3.99 5.99 3.99 5.99 4.99 1 1 Other 4.99 2

It consists of Set, Subj, Brand, Price, and a choice time variable c. In addition, it contains five variables
p1 through p5. The first observation of the Price variable shows us that the first alternative costs $3.99;
p1 contains the cost of alternative 1, $3.99, which is the same for all alternatives. It does not matter which
alternative you are looking at, p1 shows that alternative 1 costs $3.99. Similarly, the second observation of the

175

Price variable shows us that the second alternative costs $5.99; p2 contains the cost of alternative 2, $5.99,
which is the same for all alternatives. There is one price variable, p1 through p5, for each alternative.

In all of the previous examples, we have seen models coded so that the utility of an alternative only depended
on the attributes of that alternative. For example, the utility of Brand 1 would only depend on the Brand 1 name
and its price. In contrast, p1-p5 contain information about each of the other alternatives’ attributes. We will
construct cross effects using the interaction of p1-p5 and the Brand variable. In a model with cross effects, the
utility for an alternative depends on both that alternative’s attributes and the other alternatives’ attributes. The
IIA (independence from irrelevant alternatives) property states that utility only depends on an alternative’s own
attributes. Cross effects add other alternative’s attributes to the model, so they can be used to test for violations
of IIA. (See pages 180, 187, 301, and 305 for other discussions of IIA.) Here is the PROC TRANSREG code for
the cross effects model.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none separators=’’ ’ ’) |

identity(price)
identity(p1-p&m) *
class(brand / zero=none lprefix=0 separators=’’ ’ on ’) / lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’

p1 = ’Brand 1’ p2 = ’Brand 2’ p3 = ’Brand 3’
p4 = ’Brand 4’ p5 = ’Other’;

id subj set c;
run;

The class(brand / zero=none separators=” ’ ’) | identity(price) specification in the
model statement is the same as the previous analysis. The additional terms, identity(p1-p&m) *
class(brand / zero=none lprefix=0 separators=” ’ on ’) create the cross effects. The
second value of the separators= option, ’ on ’ is used to create labels like “Brand 1 on Brand 2” instead
of the default “Brand 1 * Brand 2”. It is important to note that you must specify the cross effect by specifying
identity with the brand/price effects, followed by the asterisk, followed by class and the brand effect. This
influences the order in which the labels are written. Do not specify the brand variable first; doing so will create
incorrect labels.

With m alternatives, there are m�m cross effects, but as we will see, many of them will be zero. The first coded
choice set is printed with the following PROC PRINT steps. Multiple steps are used to facilitate explaining the
coding.

title2 ’Discrete Choice with Cross Effects, Mother Logit’;
proc print data=coded(obs=5) label; var subj set c brand price; run;
proc print data=coded(obs=5) label; var Brand:; run;
proc print data=coded(obs=5) label; var p1B:; id brand; run;
proc print data=coded(obs=5) label; var p2B:; id brand; run;
proc print data=coded(obs=5) label; var p3B:; id brand; run;
proc print data=coded(obs=5) label; var p4B:; id brand; run;
proc print data=coded(obs=5) label; var p5B:; id brand; run;

The coded data set contains the strata variable Subj and Set, choice time variable c, and Brand and Price.
Brand and Price were used to create the coded independent variables but they are not used in the analysis
with PROC PHREG.

176

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Obs Subj Set c Brand Price

1 1 1 1 Brand 1 3.99
2 1 1 2 Brand 2 5.99
3 1 1 2 Brand 3 3.99
4 1 1 2 Brand 4 5.99
5 1 1 2 Other 4.99

“Brand 1” through “Other” are binary brand effect variables. They indicate the brand for each alternative. “Brand
1 Price” through “Other Price” are alternative-specific price effects. They indicate the price for each alternative.
All ten of these variables are independent variables in the analysis, and their names are part of the & -trgind
macro variable list as are all of the cross effects that are described next.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand Brand 1 Brand 2 Brand 3 Brand 4 Other
Obs 1 2 3 4 Other Price Price Price Price Price Brand

1 1 0 0 0 0 3.99 0.00 0.00 0.00 0.00 Brand 1
2 0 1 0 0 0 0.00 5.99 0.00 0.00 0.00 Brand 2
3 0 0 1 0 0 0.00 0.00 3.99 0.00 0.00 Brand 3
4 0 0 0 1 0 0.00 0.00 0.00 5.99 0.00 Brand 4
5 0 0 0 0 1 0.00 0.00 0.00 0.00 4.99 Other

“Brand 1 on Brand 1” through “Brand 1 on Other” are the first five cross effects. They represent the effect on the
utility of each alternative of Brand 1 at its price appearing in the choice set. The label “Brand n on Brand m” is
read as “the effect of Brand n at its price on the utility of Brand m.” For the first choice set, these first five cross
effects consist entirely of zeros and $3.99’s, where $3.99 is the price of Brand 1 in this choice set. This value is
constant across the alternatives in the first choice set since the price of Brand 1 is constant within the first choice
set. Notice that “Brand 1 on Brand 1”, which is the effect on the utility of Brand 1 at its price on Brand 1, is the
same as “Brand 1 Price” (shown in the previous output), which is the effect of the Brand 1 price on the utility for
the Brand 1 alternative. In other words, the “Brand 1 on Brand 1” cross effect is the same as the “Brand 1 Price”
effect. Because of this, when we do the analysis, we will see that the coefficient for the effect of “Brand 1 on
Brand 1” will be zero.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand
1 on 1 on 1 on 1 on Brand 1

Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other

Brand 1 3.99 0.00 0.00 0.00 0.00
Brand 2 0.00 3.99 0.00 0.00 0.00
Brand 3 0.00 0.00 3.99 0.00 0.00
Brand 4 0.00 0.00 0.00 3.99 0.00
Other 0.00 0.00 0.00 0.00 3.99

“Brand 2 on Brand 1” through “Brand 2 on Other” are the next five cross effects. They represent the effect on
the utility of each alternative of Brand 2 at its price appearing in the choice set. For the first choice set, these five
cross effects consist entirely of zeros and $4.99’s, where $4.99 is the price of Brand 2 in this choice set. This
value is constant across the alternatives in the first choice set since the price of Brand 2 is constant within the

177

first choice set. Notice that “Brand 2 on Brand 2”, which is the effect on the utility of Brand 2 at its price on
Brand 2, is the same as “Brand 2 Price” (shown in a previous output), which is the effect of the Brand 2 price on
the utility for the Brand 2 alternative. In other words, the “Brand 2 on Brand 2” cross effect is the same as the
“Brand 2 Price” effect. Because of this, when we do the analysis, we will see that the coefficient for the effect of
“Brand 2 on Brand 2” will be zero.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand
2 on 2 on 2 on 2 on Brand 2

Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other

Brand 1 5.99 0.00 0.00 0.00 0.00
Brand 2 0.00 5.99 0.00 0.00 0.00
Brand 3 0.00 0.00 5.99 0.00 0.00
Brand 4 0.00 0.00 0.00 5.99 0.00
Other 0.00 0.00 0.00 0.00 5.99

“Brand 3 on Brand 1” through “Brand 2 on Other” are the next five cross effects. They represent the effect on
the utility of each alternative of Brand 3 at its price appearing in the choice set. For the first choice set, these
five cross effects consist entirely of zeros and $3.99’s, where $3.99 is the price of Brand in this choice set. This
value is constant across the alternatives in the first choice set since the price of Brand 3 is constant within the
first choice set. Notice that “Brand 3 on Brand 3”, which is the effect on the utility of Brand 3 at its price on
Brand 3, is the same as “Brand 3 Price” (shown in a previous output), which is the effect of the Brand 3 price on
the utility for the Brand 3 alternative. In other words, the “Brand 3 on Brand 3” cross effect is the same as the
“Brand 3 Price” effect. Because of this, when we do the analysis, we will see that the coefficient for the effect of
“Brand 3 on Brand 3” will be zero.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand
3 on 3 on 3 on 3 on Brand 3

Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other

Brand 1 3.99 0.00 0.00 0.00 0.00
Brand 2 0.00 3.99 0.00 0.00 0.00
Brand 3 0.00 0.00 3.99 0.00 0.00
Brand 4 0.00 0.00 0.00 3.99 0.00
Other 0.00 0.00 0.00 0.00 3.99

Here are the remaining cross effects. They follow the same pattern that was described for the cross effects above.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand
4 on 4 on 4 on 4 on Brand 4

Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other

Brand 1 5.99 0.00 0.00 0.00 0.00
Brand 2 0.00 5.99 0.00 0.00 0.00
Brand 3 0.00 0.00 5.99 0.00 0.00
Brand 4 0.00 0.00 0.00 5.99 0.00
Other 0.00 0.00 0.00 0.00 5.99

178

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Other on Other on Other on Other on Other on
Brand Brand 1 Brand 2 Brand 3 Brand 4 Other

Brand 1 4.99 0.00 0.00 0.00 0.00
Brand 2 0.00 4.99 0.00 0.00 0.00
Brand 3 0.00 0.00 4.99 0.00 0.00
Brand 4 0.00 0.00 0.00 4.99 0.00
Other 0.00 0.00 0.00 0.00 4.99

We have been describing variables by their labels. While it is not necessary to look at it, the &-trgind macro
variable name list that PROC TRANSREG creates for this problem is as follows:

%put &_trgind;

BrandBrand_1 BrandBrand_2 BrandBrand_3 BrandBrand_4 BrandOther
BrandBrand_1Price BrandBrand_2Price BrandBrand_3Price BrandBrand_4Price
BrandOtherPrice p1BrandBrand_1 p1BrandBrand_2 p1BrandBrand_3 p1BrandBrand_4
p1BrandOther p2BrandBrand_1 p2BrandBrand_2 p2BrandBrand_3 p2BrandBrand_4
p2BrandOther p3BrandBrand_1 p3BrandBrand_2 p3BrandBrand_3 p3BrandBrand_4
p3BrandOther p4BrandBrand_1 p4BrandBrand_2 p4BrandBrand_3 p4BrandBrand_4
p4BrandOther p5BrandBrand_1 p5BrandBrand_2 p5BrandBrand_3 p5BrandBrand_4
p5BrandOther

The analysis proceeds in exactly the same manner seen many times previously.

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

proc freq;
tables event * censored / list;
where n(stratum);
run;

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

179

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 2575.101 2349.325
AIC 2575.101 2389.325
SBC 2575.101 2483.018

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 225.7752 20 <.0001
Score 218.4500 20 <.0001
Wald 190.0257 20 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 1.24963 1.31259 0.9064 0.3411
Brand 2 1 -0.16269 1.38579 0.0138 0.9065
Brand 3 1 -3.90179 1.56511 6.2150 0.0127
Brand 4 1 2.49435 1.25537 3.9480 0.0469
Other 0 0 . . .

Brand 1 Price 1 0.51056 0.13178 15.0096 0.0001
Brand 2 Price 1 -0.04920 0.13411 0.1346 0.7137
Brand 3 Price 1 -0.27594 0.15517 3.1623 0.0754
Brand 4 Price 1 0.28951 0.12192 5.6389 0.0176
Other Price 0 0 . . .

Brand 1 on Brand 1 0 0 . . .
Brand 1 on Brand 2 1 0.51651 0.13675 14.2653 0.0002
Brand 1 on Brand 3 1 0.66122 0.15655 17.8397 <.0001
Brand 1 on Brand 4 1 0.32806 0.12664 6.7105 0.0096
Brand 1 on Other 0 0 . . .

Brand 2 on Brand 1 1 -0.39876 0.12832 9.6561 0.0019
Brand 2 on Brand 2 0 0 . . .
Brand 2 on Brand 3 1 -0.01755 0.15349 0.0131 0.9090
Brand 2 on Brand 4 1 -0.33802 0.12220 7.6512 0.0057
Brand 2 on Other 0 0 . . .

Brand 3 on Brand 1 1 -0.43868 0.13119 11.1823 0.0008
Brand 3 on Brand 2 1 -0.31541 0.13655 5.3356 0.0209
Brand 3 on Brand 3 0 0 . . .
Brand 3 on Brand 4 1 -0.54854 0.12528 19.1723 <.0001
Brand 3 on Other 0 0 . . .

Brand 4 on Brand 1 1 0.24398 0.12781 3.6443 0.0563
Brand 4 on Brand 2 1 -0.01214 0.13416 0.0082 0.9279
Brand 4 on Brand 3 1 0.40500 0.15285 7.0211 0.0081
Brand 4 on Brand 4 0 0 . . .
Brand 4 on Other 0 0 . . .

Other on Brand 1 0 0 . . .
Other on Brand 2 0 0 . . .
Other on Brand 3 0 0 . . .
Other on Brand 4 0 0 . . .
Other on Other 0 0 . . .

180

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

The FREQ Procedure

Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
--

1 4 800 100.00 800 100.00

The results consist of:

� four nonzero brand effects and a zero for the constant alternative

� four nonzero alternative-specific price effects and a zero for the constant alternative

� 5� 5 = 25 cross effects, the number of alternatives squared, but only (5� 1)� (5� 2) = 12 of them are
nonzero (four brands not counting Other affecting each of the remaining three brands).

� There are three cross effects for the effect of Brand 1 on Brands 2, 3, and 4.

� There are three cross effects for the effect of Brand 2 on Brands 1, 3, and 4.

� There are three cross effects for the effect of Brand 3 on Brands 1, 2, and 4.

� There are three cross effects for the effect of Brand 4 on Brands 1, 2, and 3.

All coefficients for the constant (other) alternative are zero as are the cross effects of a brand on itself.

The mother logit model is used to test for violations of IIA (independence from irrelevant alternatives). IIA means
the odds of choosing alternative ci over cj do not depend on the other alternatives in the choice set. Ideally, this
more general model will not significantly explain more variation in choice than the restricted models. Also, if IIA
is satisfied, few if any of the cross-effect terms should be significantly different from zero. (See pages 175, 187,
301, and 305 for other discussions of IIA.) In this case, it appears that IIA is not satisfied (the data are artificial),
so the more general mother logit model is needed. The chi-square statistic is 2424:812� 2349:325 = 75:487

with 20� 8 = 12 df (p < 0:0001).

You could eliminate some of the zero parameters by changingzero=none to zero=’Other’ and eliminating
p5 (p&m) from the model.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=’Other’ separators=’’ ’ ’) |

identity(price)
identity(p1-p4) *
class(brand / zero=’Other’ separators=’’ ’ on ’) / lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’

p1 = ’Brand 1’ p2 = ’Brand 2’ p3 = ’Brand 3’
p4 = ’Brand 4’;

id subj set c;
run;

You could also eliminate the brand by price effects and instead capture brand by price effects as the cross effect
of a variable on itself.

181

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=’Other’ separators=’’ ’ ’)

identity(p1-p4) *
class(brand / zero=’Other’ separators=’’ ’ on ’) / lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’

p1 = ’Brand 1’ p2 = ’Brand 2’ p3 = ’Brand 3’
p4 = ’Brand 4’;

id subj set c;
run;

In both cases, the analysis (not shown) would be run in the usual manner. Except for the elimination of zero
terms, and in the second case, the change to capture the price effects in the cross effects, the results are identical.

Aggregating the Data
In all examples so far (except the last part of the last vacation example), the data set has been created for analysis
with one stratum for each choice set and subject combination. Such data sets can be large. The data can also be
arrayed with a frequency variable and each choice set forming a separate stratum. This example illustrates how.

title ’Brand Choice Example, Multinomial Logit Model’;
title2 ’Aggregate Data’;

%let m = 5; /* Number of Brands in Each Choice Set (including Other) */

proc format;
value brand 1 = ’Brand 1’ 2 = ’Brand 2’ 3 = ’Brand 3’ 4 = ’Brand 4’

5 = ’Other’;
run;

data price2;
array p[&m] p1-p&m; /* Prices for the Brands */
array f[&m] f1-f&m; /* Frequency of Choice */

input p1-p&m f1-f&m;
keep set price brand freq c p1-p&m;

* Store choice set number to stratify;
Set = _n_;

do Brand = 1 to &m;

Price = p[brand];

* Output first choice: c=1, unchosen: c=2;
Freq = f[brand]; c = 1; output;

* Output number of times brand was not chosen.;
freq = sum(of f1-f&m) - freq; c = 2; output;

end;

format brand brand.;

182

datalines;
3.99 5.99 3.99 5.99 4.99 4 29 16 42 9
5.99 5.99 5.99 5.99 4.99 12 19 22 33 14
5.99 5.99 3.99 3.99 4.99 34 26 8 27 5
5.99 3.99 5.99 3.99 4.99 13 37 15 27 8
5.99 3.99 3.99 5.99 4.99 49 1 9 37 4
3.99 5.99 5.99 3.99 4.99 31 12 6 18 33
3.99 3.99 5.99 5.99 4.99 37 10 5 35 13
3.99 3.99 3.99 3.99 4.99 16 14 5 51 14
;

proc print data=price2(obs=10);
var set c freq price brand;
run;

Brand Choice Example, Multinomial Logit Model
Aggregate Data

Obs Set c Freq Price Brand

1 1 1 4 3.99 Brand 1
2 1 2 96 3.99 Brand 1
3 1 1 29 5.99 Brand 2
4 1 2 71 5.99 Brand 2
5 1 1 16 3.99 Brand 3
6 1 2 84 3.99 Brand 3
7 1 1 42 5.99 Brand 4
8 1 2 58 5.99 Brand 4
9 1 1 9 4.99 Other

10 1 2 91 4.99 Other

This data set has 5 brands times 2 observations times 8 choice sets for a total of 80 observations, compared to
100� 5 � 8 = 4000 using the standard method. Two observations are created for each alternative within each
choice set. The first contains the number of people who chose the alternative, and the second contains the number
of people who did not choose the alternative.

To analyze the data, specify strata Set and freq Freq.

proc transreg design data=price2 nozeroconstant norestoremissing;
model class(brand / zero=none) identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id freq set c;
run;

proc phreg data=coded;
title2 ’Discrete Choice with Common Price Effect, Aggregate Data’;
model c*c(2) = &_trgind / ties=breslow;
strata set;
freq freq;
run;

This step produced the following results.

183

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect, Aggregate Data

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Freq
Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 500 100 400
2 2 500 100 400
3 3 500 100 400
4 4 500 100 400
5 5 500 100 400
6 6 500 100 400
7 7 500 100 400
8 8 500 100 400

Total 4000 800 3200

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 9943.373 9793.486
AIC 9943.373 9803.486
SBC 9943.373 9826.909

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 149.8868 5 <.0001
Score 153.2328 5 <.0001
Wald 142.9002 5 <.0001

184

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 0.66727 0.12305 29.4065 <.0001
Brand 2 1 0.38503 0.12962 8.8235 0.0030
Brand 3 1 -0.15955 0.14725 1.1740 0.2786
Brand 4 1 0.98964 0.11720 71.2993 <.0001
Other 0 0 . . .
Price 1 0.14966 0.04406 11.5379 0.0007

The summary table is small with eight rows, one row per choice set. Each row represents 100 chosen alternatives
and 400 unchosen. The “Analysis of Maximum Likelihood Estimates” table exactly matches the one produced
by the standard analysis. The -2 LOG L statistics are different than those seen before, 9793.486 now compared
to 2425.214 previously. This is because the data are arrayed in this example so that the partial likelihood of the
proportional hazards model fit by PROC PHREG with the ties=breslow option is now proportional to� not
identical to � the likelihood for the choice model. However, the Model Chi-Square statistics, df, and p-values
are the same as before. The two corresponding pairs of -2 LOG L’s differ by a constant 9943:373� 2575:101 =

9793:486�2425:214= 7368:272 = 2�800� log(100). Since the �2 is the -2 LOG L without covariates minus
-2 LOG L with covariates, the constants cancel and the �2 test is correct for both methods.

The technique of aggregating the data and using a frequency variable can be used for other models as well, for
example with brand by price effects.

proc transreg design data=price2 nozeroconstant norestoremissing;
model class(brand / zero=none separators=’’ ’ ’) |

identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id freq set c;
run;

proc phreg data=coded;
title2 ’Discrete Choice with Brand by Price Effects, Aggregate Data’;
model c*c(2) = &_trgind / ties=breslow;
strata set;
freq freq;
run;

This step produced the following results. The only thing that changes from the analysis with one stratum for each
subject and choice set combination is the likelihood.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects, Aggregate Data

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Freq
Ties Handling BRESLOW

185

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 500 100 400
2 2 500 100 400
3 3 500 100 400
4 4 500 100 400
5 5 500 100 400
6 6 500 100 400
7 7 500 100 400
8 8 500 100 400

Total 4000 800 3200

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 9943.373 9793.084
AIC 9943.373 9809.084
SBC 9943.373 9846.561

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 150.2891 8 <.0001
Score 154.2562 8 <.0001
Wald 143.1425 8 <.0001

The PHREG Procedure

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 -0.00972 0.43555 0.0005 0.9822
Brand 2 1 -0.62230 0.48866 1.6217 0.2028
Brand 3 1 -0.81250 0.60318 1.8145 0.1780
Brand 4 1 0.31778 0.39549 0.6456 0.4217
Other 0 0 . . .

Brand 1 Price 1 0.13587 0.08259 2.7063 0.1000
Brand 2 Price 1 0.20074 0.09210 4.7512 0.0293
Brand 3 Price 1 0.13126 0.11487 1.3057 0.2532
Brand 4 Price 1 0.13478 0.07504 3.2255 0.0725
Other Price 0 0 . . .

Previously, with one stratum per choice set within subject, we compared these models as follows: “The difference
2425:214 � 2424:812 = 0:402 is distributed �

2 with 8 � 5 = 3 df and is not statistically significant.” The
difference between two �2 log(LC)’s equals the difference between two �2 log(LB)’s, since the constant terms

186

(800� log(100)) cancel, 9793:486� 9793:084 = 2425:214� 2424:812 = 0:402.

Choice and Breslow Likelihood Comparison
This section explains why the -2 LOG L values differ by a constant with aggregate data versus individual data.
It may be skipped by all but the most dedicated readers.

Consider the choice model with a common price slope. Let x0 represent the price of the brand. Let x1, x2, x3,
and x4 be indicator variables representing the choice of brands. Let x = (x 0 x1 x2 x3 x4) be the vector of
alternative attributes. (A sixth element for “Other” is omitted, since its parameter is always zero given the other
brands.)

Consider the first choice set. There are five distinct vectors of alternative attributes
x1 = (3:99 1 0 0 0) x2 = (5:99 0 1 0 0) x3 = (3:99 0 0 1 0) x4 = (5:99 0 0 0 1)

x5 = (4:99 0 0 0 0)

The vector x2, for example, represents choice of Brand 2, and x 5 represents the choice of Other. One hundred
individuals were asked to choose one of the m = 5 brands from each of the eight sets. Let f 1, f2, f3, f4, and f5
be the number of times each brand was chosen. For the first choice set, f 1 = 4, f2 = 29, f3 = 16, f4 = 42, and
f5 = 9. Let N be the total frequency for each choice set, N =

P
5

j=1 fj = 100. The likelihood LC
1

for the first
choice set data is

L
C
1
=

exp
��P

5

j=1 fjxj

�
�
�

hP
5

j=1 exp(xj�)
iN

The joint likelihood for all eight choice sets is the product of the likelihoods

LC =

8Y
k=1

L
C
k

The Breslow likelihood for this example, LB
k , for the kth choice set, is the same as the likelihood for the choice

model, except for a multiplicative constant.

L
C
k = N

N
L
B
k = 100100LBk

Therefore, the Breslow likelihood for all eight choice sets is

LB =

8Y
k=1

L
B
k = N

�8NLC = 100�800LC

The two likelihoods are not exactly the same, because each choice set is designated as a separate stratum, instead
of each choice set within each subject.

The log likelihood for the choice model is

log(LC) = 800� log(100) + log(LB);

log(LC) = 800� log(100) + (�0:5)� 9793:486;

log(LC) = �1212:607

and �2 log(LC) = 2425:214, which matches the earlier output. However, it is usually not necessary to obtain
this value.

187

Food Product Example with Asymmetry and
Availability Cross Effects

This is the choice example from Kuhfeld, Tobias, and Garratt (1994). Consider the problem of using a discrete
choice model to study the effect of introducing a retail food product. This may be useful, for instance, to refine a
marketing plan or to optimize a product prior to test market. A typical brand team will have several concerns such
as knowing the potential market share for the product, examining the source of volume, and providing guidance
for pricing and promotions. The brand team may also want to know what brand attributes have competitive clout
and want to identify competitive attributes to which they are vulnerable.

To develop this further, assume our client wishes to introduce a line extension in the category of frozen entrees.
The client has one nationally branded competitor, a regional competitor in each of three regions, and a profusion
of private label products at the grocery chain level. The product may come in two different forms: stove-top or
microwaveable. The client believes that the private labels are very likely to mimic this line extension and to sell
it at a lower price. The client suspects that this strategy on the part of private labels may work for the stove-top
version but not for the microwaveable, where they have the edge on perceived quality. They also want to test the
effect of a shelf-talker that will draw attention to their product.

The Multinomial Logit Model
This problem may be set up as a discrete choice model in which a respondent’s choice among brands, given
choice set Ca of available brands, will correspond to the brand with the highest utility. For each brand i, the
utility Ui is the sum of a systematic component Vi and a random component ei. The probability of choosing
brand i from choice set Ca is therefore:

P (ijCa) = P (Ui > max(Uj)) = P (Vi + ei > max(Vj + ej)) 8 (j 6= i) 2 Ca

Assuming that the ei follow an extreme value type I distribution, the conditional probabilities P (ijC a) can be
found using the multinomial logit (MNL) formulation of McFadden (1974)

P (ijCa) = exp(Vi)=
P

j2Ca

exp(Vj)

One of the consequences of the MNL formulation is the property of independence from irrelevant alternatives
(IIA). Under the assumption of IIA, all cross effects are assumed to be equal, so that if a brand gains in utility, it
draws share from all other brands in proportion to their current shares. Departures from IIA exist when certain
subsets of brands are in more direct competition and tend to draw a disproportionate amount of share from each
other than from other members in the category. One way to capture departures from IIA is to use the mother logit
formulation of McFadden (1974). In these models, the utility for brand i is a function of both the attributes of
brand i and the attributes of other brands. The effect of one brand’s attributes on another is termed a cross effect.
In the case of designs in which only subsets Ca of the full shelf set C appear, the effect of the presence/absence
of one brand on the utility of another is termed an availability cross effect. (See pages 175, 180, 301, and 305 for
other discussions of IIA.)

Set Up
In the frozen entree example, there are five alternatives: the client, the client’s line extension, a national branded
competitor, a regional brand and a private label brand. Several regional and private labels can be tested in each
market, then aggregated for the final model. Note that the line extension is treated as a separate alternative rather
than as a level of the client brand. This enables us to model the source of volume for the new entry and to quantify
any cannibalization that occurs. Each brand is shown at either two or three price points. Additional price points
are included so that quadratic models of price elasticity may be tested. The indicator for the presence or absence

188

of a brand in the shelf set is coded using one level of the Price variable. The layout of factors and levels is
given in the following table.

Factors and Levels

Alternative Factor Levels Brand Description

1 X1 4 Client 3 prices + absent

2 X2 4 Client Line Extension 3 prices + absent
X3 2 microwave/stove-top
X4 2 shelf-talker yes/no

3 X5 3 Regional 2 prices + absent

4 X6 3 Private Label 2 prices + absent
X7 2 microwave/stove-top

5 X8 3 Competitor 2 prices + absent

In addition to intercepts and main effects, we also require that all two-way interactions within alternatives be
estimable: x2*x3, x2*x4, x3*x4 for the line extension and x6*x7 for private labels. This will enable us
to test for different price elasticities by form (stove-top versus microwaveable) and to see if the promotion works
better combined with a low price or with different forms. Using a linear model for x1-x8, the total number of
parameters including the intercept, all main effects, and two-way interactions with brand is 25. This assumes that
price is treated as qualitative. The actual number of parameters in the choice model is larger than this because of
the inclusion of cross effects. Using indicator variables to code availability, the systematic component of utility
for brand i can be expressed as:

Vi = ai +
P

k(bik � xik) +
P

j 6=i zj(dij +
P

l(gijl � xjl))

where

ai = intercept for brand i
bik = effect of attribute k for brand i, where k = 1; ::;K i

xik = level of attribute k for brand i
dij = availability cross effect of brand j on brand i

zj = availability code =

�
1 if j 2 Ca;

0 otherwise
gijl = cross effect of attribute l for brand j on brand i, where l = 1; ::; L j

xjl = level of attribute l for brand j.

The xik and xjl might be expanded to include interaction and polynomial terms. In an availability-cross-effects
design, each brand is present in only a fraction of choice sets. The size of this fraction or subdesign is a function
of the number of levels of the alternative-specific variable that is used to code availability (usually price). For
instance, if price has three valid levels and a fourth zero level to indicate absence, then the brand will appear in
only three out of four runs. Following Lazari and Anderson (1994), the size of each subdesign determines how
many model equations can be written for each brand in the discrete choice model. If X i is the subdesign matrix
corresponding to Vi, then each Xi must be full rank to ensure that the choice set design provides estimates for all
parameters.

To create the design, a full-factorial candidate set is generated consisting of 3456 runs. It is then reduced to 2776
runs that contain between two and four brands so that the respondent is never required to compare more than

189

four brands at a time. In the algorithm model specification, we designate all variables as classification variables
and require that all main effects and two-way interactions within brands be estimable. The number of runs to use
follows from a calculation of the number of parameters that we wish to estimate in the various submatrices X i

of X. Assuming that there is a None alternative used as a reference level, the numbers of parameters required for
various alternatives are shown in the next table along with the size of submatrices (rounded down) for various
numbers of runs. Parameters for quadratic price models are given in parentheses. Note that the effect of private
label being in a microwaveable or stove-top form (stove/micro cross effect) is an explicit parameter under the
client line extension.

Parameters

Client Private
Effect Client Line Extension Regional Label Competitor

intercept 1 1 1 1 1
availability cross effects 4 4 4 4 4
direct price effect 1 (2) 1 (2) 1 1 1
price cross effects 4 (8) 4 (8) 4 4 4
stove versus microwave - 1 - 1 -
stove/micro cross effects - 1 - - -
shelf-talker - 1 - - -
price*stove/microwave - 1 (2) - 1 -
price*shelf-talker - 1 (2) - - -
stove/micro*shelf-talker - 1 - - -

Total 10 (15) 16 (23) 10 12 10

Subdesign size

22 runs 16 16 14 14 14
26 runs 19 19 17 17 17
32 runs 24 24 21 21 21

The subdesign sizes are computed by taking the floor of the number of runs from the marginal times the expected
proportion of runs in which the alternative will appear. For example, for the client brand which has three prices
and not available and 22 runs, oor(22� 3=4) = 16; for the competitor and 32 runs, oor(32� 2=3) = 21. The
number of runs chosen was n=26. This number provides adequate degrees of freedom for the linear price model
and will also allow estimation of direct quadratic price effects. To estimate quadratic cross effects for price would
require 32 runs at the very least. Although the technique of using two-way interactions between nominal level
variables will usually guarantee that all direct and cross effects are estimable, it is sometimes necessary and good
practice to check the ranks of the submatrices for more complex models (Lazari and Anderson 1994).

Designing the Choice Experiment
We will use the %MKTDES autocall macro to create the design. (All of the autocall macros used in this report
are documented starting on page 261.) We will start by trying small candidate sets first, as we did in the other
examples. The following code shows our first attempt at finding an efficient design.

title ’Consumer Food Product Example’;

%mktdes(factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +

(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

190

The option factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3 names x1 and x2 as four-level factors,
x3, x4, and x7 as two-level factors, and x5, x6 and x8 as three-level factors. The number of choice sets is
n=26. The option interact=x2*x3 x2*x4 x3*x4 x6*x7 names the two-way interactions of interest.
The option procopts=seed=7654321 names the random number seed. This example also uses a where=
option that we have not seen in previous examples. The where= option is used to exclude certain combinations
from the candidate set.

Each of the price variables, x1, x2, x5, x6, and x8, has one level � the maximum level � that indicates the
alternative is not available in the choice set. The goal is to create choice sets with either 2, 3, or 4 alternatives
available. If (x1 < 4) then the first alternative is available, if (x2 < 4) then the second alternative is
available, if (x5 < 3) then the third alternative is available, and so on. The Boolean term (x1 < 4) is one
when x1 is less than 4 and zero otherwise. Hence,

((x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3)) is the number of available al-
ternatives. The where= option keeps all of the choice sets in which either 2, 3, or 4 alternatives are available.
The value of the where= option must be a valid SAS System where clause. This step does not work. PROC
OPTEX exits with the messages:

ERROR: Can’t estimate the model parameters from the given candidates.
ERROR: No design to output.

The problem is the candidate set had only 64 runs before the exclusions and only 48 after. The exclusions were
severe enough that it is not possible from this candidate set to create a design in 26 runs in which all effects are
estimable. As in previous examples, we can try different sizes and a two-step process.

%mktdes(factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, size=1024,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +

(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

%mktdes(factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, size=2048,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +

(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

%mktdes(factors=x1 x2=4 x3 x4 x7=2, run=factex, step=1, size=64,
interact=x2*x3 x2*x4 x3*x4)

%mktdes(factors=x5 x6 x8=3, n=26, run=factex optex, step=2, size=27,
otherint=x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +

(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

The second step produces a design with D-efficiency=82.2623. Since the full-factorial design has 3,456 runs for
this problem, it is reasonable to try it. We specify big=5000, a number larger than the size of the full-factorial
so that the macro will use PROC PLAN to create the full factorial instead of PROC FACTEX.

title ’Consumer Food Product Example’;

%mktdes(factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +

(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=7654321)

After exclusions, the candidate set has 2776 runs. This size, while well within the reasonable range is large
enough that local optima will likely be a problem. That is, PROC OPTEX will have a tough time finding the
optimal design, although as always, we would expect it to come very close very quickly. The PROC PLAN step
took less than a second, and the PROC OPTEX step took about 28 seconds to create 10 designs.

191

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 83.7773 68.5707 60.5171 1.1782
2 83.5351 66.5636 56.3773 1.1973
3 83.4898 66.6937 53.3434 1.1887
4 83.0419 66.7546 57.1022 1.1854
5 82.9902 67.1331 58.7965 1.1883

When You Have a Long Time to Search for an Efficient Design
With a moderate to large candidate set such as this one, it is likely that we can do better with more iterations.
The next steps show how to repeatedly run PROC OPTEX from a macro, each time with a different (clock
determined) seed. This job is run in batch over lunch, overnight, or over the weekend. First, the %MKTDES
macro is run once to create the candidate set. The ad hoc macro %DOIT runs PROC OPTEX up to 10,000 times.
Each time, the best efficiency found so far and the random number seed used to find it are reported and stored.

%mktdes(factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +

(x6 < 3) + (x8 < 3)) <= 4),
run=plan)

%macro doit;
%let best = 0;
%let seed = 5;

%do i = 1 %to 10000;
title "&i"; %put &i;
proc optex data=Cand1 seed=&seed;

ods output efficiencies=e;
class x1 x2 x3 x4 x5 x6 x7 x8 / param=orthref;
model x1 x2 x3 x4 x5 x6 x7 x8 x2*x3 x2*x4 x3*x4 x6*x7;
generate n=26 iter=20 keep=1 method=m_federov;
output out=Design;
run; quit;

data _null_;
set e;
if DCriterion > &best then do;

call symput(’best’, put(DCriterion, 8.4));
call symput(’bestseed’, symget(’seed’));
end;

seed = abs(1e6 * (1e-5 + time() - floor(time())));
call symput(’seed’, compress(put(seed, 12.0)));
run;

data sasuser.results;
DCriterion = &best;
Seed = &bestseed;
run;

192

%put seed=&seed, best=&best, best seed=&bestseed;
%end;

%mend;

%doit

The macro variable Best, the best efficiency found, is initialized to zero. The random number seed is initialized
to an arbitrary value, in this case 5. The macro do loop loops over the PROC OPTEX step and the DATA steps
that report and store the results. The PROC OPTEX code came from copying the code that the macro wrote,
modifying the random number seed to use a macro variable and modifying iter= and keep= to iterate 20
times and report the best design. In addition, an ods output efficiencies=e statement is added so the
efficiency of the best design will be available in a SAS data set.

The data -null- step reads the D-efficiency for the latest PROC OPTEX step, and if it is better than the
previous best, stores it in a macro variable along with the random number seed. This step also generates a
new random number seed from the clock time. Finally, the results are stored in a permanent SAS data set
SASUSER.RESULTS. This approach is preferred over simply specifying something like iter= 100000 with
PROC OPTEX because intermediate results are quickly available. If there is a power failure or other problem
while the job runs, you should still get useful information. On some operating systems, you can even monitor the
progress of the job. If this macro was stored in a file macro.sas and run by typing sas macro.sas, then
the results are in the files macro.lst and macro.log. For example, on a work station running UNIX, you
can look at these files as the job is running. Since clock time is used to make random number seeds, these results
will not exactly be reproduced if this same code is run again.

Looking at the end of the list file, we find the maximum efficiency of 85.3985 in run 9576 of PROC OPTEX. The
next table shows the PROC OPTEX run where the best efficiency changed and the percent improvement. This
table shows efficiency ranging from the best D-efficiency found in the first 20 iterations to the largest D-efficiency
found anywhere.

PROC
OPTEX Percent

Run D-Efficiency Improvement
1 83.8959
2 83.9890 0.11%
3 84.3763 0.46%
6 84.7548 0.45%

84 85.1561 0.47%
1535 85.3298 0.20%
9576 85.3985 0.08%

This example is interesting because it shows the diminishing value of increasing numbers of iterations. PROC
OPTEX was run 10,000 times over the winter holiday vacation, from December 22 through January 2, creating
a total of 200,000 designs. Six minutes into the search, in the first six passes through the macro (6� 20 = 120

total iterations), we find a design with reasonably good D-efficiency=84.7548. Over an hour into the search, with
(84�6)�20 = 1560more iterations, we get a small 0.47% increase in efficiency to 85.1561. About one day into
the search, with (1535� 84)� 20 = 29; 020 more iterations, we get another small 0.20% increase in efficiency,
85.3298. Finally, almost a week into the search, with (9576 � 1535) � 20 = 160; 820 more iterations, we get
another small 0.08% increase in efficiency to 85.3985. Our overall improvement above the best design found in
120 iterations was 0.75952%, about three-quarters of a percent. These numbers will change with other problems
and other seeds. However, as these results show, usually the first few iterations will give you a good, efficient
design, and usually, subsequent iterations will give you slight improvements but with a cost of much greater run
times.

193

data; input n e; datalines;
1 83.8959
2 83.9890
3 84.3763
6 84.7548

84 85.1561
1535 85.3298
9576 85.3985

;

proc gplot;
title ’Maximum D-Efficiency Found Over Time’;
plot e * n / vaxis=axis1;
symbol i=join;
axis1 order=(0 to 90 by 10);
run; quit;

The plot of maximum D-efficiency as a function of PROC OPTEX run number clearly shows that the gain is
slight over increased iterations.

e

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

n

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0

Recreating the Best Design
From the log file or from looking at SASUSER.RESULTS we see that the most efficient design was found with
seed=41611.

title ’Consumer Food Product Example’;

proc print data=sasuser.results; run;

Consumer Food Product Example

Obs DCriterion Seed

1 85.3985 41611

This design can be recreated by explicitly specifying this seed.

194

%mktdes(factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
out=sasuser.choicdes,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +

(x6 < 3) + (x8 < 3)) <= 4),
procopts=seed=41611, iter=20, keep=1)

The PROC OPTEX step took 57 seconds and produced the following results.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 85.3985 71.4573 63.7881 1.1461

Examining the Design
Here is the code that prints the frequency of occurrence of each level and each two-way interaction.

proc summary data=sasuser.choicdes;
class _all_;
ways 1 8;
output out=sum;
run;

proc print; by _type_; run;

proc freq data=sasuser.choicdes;
tables x1-x8 x2*x3 x2*x4 x3*x4 x6*x7;
run;

Here are the results, summarized in a table.

Level X1 X2 X3 X4 X5 X6 X7 X8 X2 by X3 X2 by X4 X3 by X4 X6 by X7
1 7 6 13 13 10 7 14 9 3 3 3 3 6 7 4 3
2 6 6 13 13 9 9 12 7 3 3 3 3 7 6 4 5
3 7 6 7 10 10 3 3 3 3 6 4
4 6 8 4 4 4 4

195

Examining the Submatrices
We mentioned previously, “it is sometimes necessary and good practice to check the ranks of the submatrices for
more complex models (Lazari and Anderson 1994).” Here is a way to do that. For convenience, we use a macro
since PROC OPTEX must be run five times, once per alternative, with only a change in the where statement. We
need to evaluate the design when the client’s alternative is available (x1 ne 4), when the client line extension
alternative is available (x2 ne 4), when the regional competitor is available (x5 ne 3), when the private
label competitor is available (x6 ne 3), and when the national competitor is available (x8 ne 3). We use
the same model statement as before but not the same class statement. This is because we only have enough
runs to consider linear price effects within each availability group. Hence, the price variables are no longer
designated class.

%macro evaleff(where);
proc optex data=sasuser.choicdes;

class x3 x4 x7 / param=orthref;
model x1-x8 x2*x3 x2*x4 x3*x4 x6*x7;
generate method=sequential initdesign=sasuser.choicdes;
where &where;
run; quit;

%mend;

%evaleff(x1 ne 4)
%evaleff(x2 ne 4)
%evaleff(x5 ne 3)
%evaleff(x6 ne 3)
%evaleff(x8 ne 3)

Each PROC OPTEX step took just over two seconds. We hope to not see any efficiencies of zero, and we hope to
not get the message WARNING: Can’t estimate model parameters in the final design.
Here are the results.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 62.3892 38.6926 91.6206 0.8062

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 62.6819 40.2703 86.9954 0.8498

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 66.9433 49.6260 85.7154 0.8272

196

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 73.0870 57.7546 90.5666 0.9014

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 58.6329 38.7890 90.8714 0.9014

Examining the Information and Variance Matrices
It is also a good idea to look at the information and variance matrices. This is done by adding the statement
examine i v to any PROC OPTEX run.

proc optex data=sasuser.choicdes;
class x3 x4 x7 / param=orthref;
model x1-x8 x2*x3 x2*x4 x3*x4 x6*x7;
generate method=sequential initdesign=sasuser.choicdes;
where x1 ne 4;
examine i v;
run; quit;

In the interest of space, only some of the results are shown.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 62.3892 38.6926 91.6206 0.8062

Consumer Food Product Example

The OPTEX Procedure
Examining Design Number 1

Log determinant of the information matrix 3.2811E+01
Maximum prediction variance over candidates 0.7743
Average prediction variance over candidates 0.6500
Average variance of coefficients 0.1292
D-Efficiency 62.3892
A-Efficiency 38.6926

197

Information Matrix

Intercept x1 x2 x3 x4 x5 x6

Intercept 20.0 0.0 1.3 0.0 0.0 -2.0 2.0
x1 0.0 14.0 2.0 2.0 2.0 2.0 0.0
x2 1.3 2.0 11.1 0.0 0.0 0.7 -4.7
x3 0.0 2.0 0.0 20.0 0.0 2.0 0.0
x4 0.0 2.0 0.0 0.0 20.0 -2.0 0.0
x5 -2.0 2.0 0.7 2.0 -2.0 14.0 -1.0
x6 2.0 0.0 -4.7 0.0 0.0 -1.0 14.0
x7 0.0 -2.0 -8.0 0.0 0.0 0.0 0.0
x8 2.0 -3.0 -4.7 0.0 -4.0 1.0 0.0
x2*x3 0.0 4.0 0.0 1.3 0.0 -0.7 0.0
x2*x4 0.0 0.0 0.0 0.0 1.3 0.7 1.3
x3*x4 0.0 0.0 0.0 0.0 0.0 2.0 -6.0
x6*x7 0.0 -2.0 0.0 -2.0 2.0 -1.0 0.0

.

.

.

Variance Matrix

Intercept x1 x2 x3 x4 x5 x6

Intercept 0.0639 -0.0040 -0.0687 -0.0005 -0.0074 0.0131 -0.0334
x1 -0.0040 0.0913 0.0037 -0.0044 -0.0083 -0.0168 0.0001
x2 -0.0687 0.0037 0.4145 -0.0004 0.0410 -0.0297 0.1582
x3 -0.0005 -0.0044 -0.0004 0.0522 -0.0014 -0.0070 0.0007
x4 -0.0074 -0.0083 0.0410 -0.0014 0.0605 0.0063 0.0134
x5 0.0131 -0.0168 -0.0297 -0.0070 0.0063 0.0819 -0.0087
x6 -0.0334 0.0001 0.1582 0.0007 0.0134 -0.0087 0.1482
x7 -0.0380 0.0137 0.2157 -0.0012 0.0232 -0.0194 0.0851
x8 -0.0464 0.0207 0.2223 -0.0025 0.0397 -0.0205 0.0717
x2*x3 -0.0090 -0.0289 0.0513 -0.0052 0.0135 0.0083 0.0197
x2*x4 0.0003 0.0071 -0.0044 -0.0002 -0.0053 -0.0085 -0.0154
x3*x4 -0.0054 0.0005 0.0278 0.0028 -0.0054 -0.0084 0.0431
x6*x7 -0.0019 0.0111 0.0044 0.0069 -0.0073 0.0006 0.0111

.

.

.

Examining the Aliasing Structure
It is also good to look at the aliasing structure of the design. We use PROC GLM to do this, so we must create a
dependent variable. We will use a constant Y=1. The first PROC GLM step just checks the model to make sure
none of the specified effects are aliased with each other. This step is not necessary since our D-efficiency value
greater than zero already guarantees this.

data temp;
set sasuser.choicdes;
y = 1;
run;

proc glm data=temp;
model y = x1-x8 x2*x3 x2*x4 x3*x4 x6*x7 / e aliasing;
run;

Here are the results, ignoring the ANOVA and regression tables, which are not of interest. Each of these lines is

198

a linear combination that is estimable. It is simply a list of the effects.

Intercept
x1
x2
x3
x4
x5
x6
x7
x8
x2*x3
x2*x4
x3*x4

Contrast this with a specification that includes all simple effects and two-way interactions. We specify the model
of interest first, so all of those terms will be listed first, then we specify all main effects and two-factor interactions
using the notation x1|x2|x3|x4|x5|x6|x7|x8@2. This list will generate all of the effects of interest, x1-
x8 x2*x3 x2*x4 x3*x4 x6*x7, and all the other two-way interactions, but that is not a problem since
PROC GLM automatically eliminates duplicate terms.

proc glm data=temp;
model y = x1-x8 x2*x3 x2*x4 x3*x4 x6*x7

x1|x2|x3|x4|x5|x6|x7|x8@2 / e aliasing;
run;

Intercept - 7.2928*x2*x7 + 3.9403*x3*x7 - 3.8348*x4*x7 + 8.943*x5*x7 -
3.5093*x1*x8 - 10.789*x2*x8 - 3.0971*x3*x8 - 2.6715*x4*x8 - 3.4108*x5*x8 -
1.2232*x6*x8 - 14.437*x7*x8

x1 - 1.4634*x2*x7 + 1.8795*x3*x7 - 3.7098*x4*x7 + 6.1087*x5*x7 - 1.5265*x1*x8 +
4.388*x2*x8 + 0.9191*x3*x8 - 0.2793*x4*x8 + 1.8472*x5*x8 + 0.816*x6*x8 -
8.4327*x7*x8

x2 + 2.2518*x2*x7 - 0.5586*x3*x7 + 1.8045*x4*x7 - 2.6429*x5*x7 + 5.345*x1*x8 +
0.8605*x2*x8 + 1.722*x3*x8 + 0.425*x4*x8 + 0.0336*x5*x8 + 1.2263*x6*x8 +
2.7259*x7*x8
.
.
.
x2*x3 - 0.355*x2*x7 + 0.4404*x3*x7 - 0.9841*x4*x7 + 0.6352*x5*x7 - 2.0611*x1*x8
- 0.1886*x2*x8 - 0.4661*x3*x8 - 0.3117*x4*x8 + 0.8003*x5*x8 + 0.2153*x6*x8 -
1.1787*x7*x8

x2*x4 + 0.1913*x2*x7 + 0.2884*x3*x7 + 1.2156*x4*x7 - 0.3771*x5*x7 + 2.5548*x1*x8
+ 1.365*x2*x8 + 0.4744*x3*x8 + 0.2408*x4*x8 + 0.0595*x5*x8 - 0.7713*x6*x8 +
1.219*x7*x8
.
.
.

Again, we have a list of linear combinations that are estimable. This shows that the Intercept cannot be estimated
independently of the x2*x7 interaction, the x3*x7 interaction, the x4*x7 interaction, ..., and the x7*x8
interaction. Similarly, x1 is confounded with lots of two way interactions, and so on. This is why we want to
be estimable the two-way interactions between factors that are combined to create an attribute. We did not want
something like x2*x3, the client-line extension’s price and microwave/stove top interaction to be confounded
with say another brand’s price.

199

The Final Design
This code creates the final choice design, stored in SASUSER.FINCHDES, sorted by the shelf-talker variable,
and randomized within shelf talker.

proc format;
value f1_ 1 = ’$1.29’ 2 = ’$1.69’ 3 = ’$2.09’ 4 = ’N/A’;
value f2_ 1 = ’$1.39’ 2 = ’$1.89’ 3 = ’$2.39’ 4 = ’N/A’;
value f3_ 1 = ’micro’ 2 = ’stove’;
value f5_ 1 = ’$1.99’ 2 = ’$2.49’ 3 = ’N/A’;
value f6_ 1 = ’$1.49’ 2 = ’$2.29’ 3 = ’N/A’;
value f8_ 1 = ’$1.99’ 2 = ’$2.39’ 3 = ’N/A’;
value yn 1 = ’Yes’ 2 = ’No’;
run;

data choicdes;
length b1-b5 $ 12;
set sasuser.choicdes;
r = uniform(7); /* for randomization within shelf talker */
b1 = put(x1,f1_.);
b2 = put(x2,f2_.);
if b2 ne ’N/A’ then b2 = trim(b2)||’/’||put(x3,f3_.);
b3 = put(x5,f5_.);
b4 = put(x6,f6_.);
if b4 ne ’N/A’ then b4 = trim(b4)||’/’||put(x7,f3_.);
b5 = put(x8,f8_.);
label b1 = ’Client Brand’

b2 = ’Client Line Extension’
b3 = ’Regional Brand’
b4 = ’Private Label’
b5 = ’National Competitor’
x4 = ’Shelf Talker’;

format x4 yn.;
run;

proc sort out=sasuser.finchdes(drop=r); by descending x4 r; run;

proc print label; var b:; by descending x4; run;

Here is the design.

Consumer Food Product Example

------------------------------- Shelf Talker=No --------------------------------

Client Client Line Regional Private National
Obs Brand Extension Brand Label Competitor

1 $1.29 $1.89/micro $1.99 N/A $1.99
2 $1.29 $1.39/stove $1.99 $2.29/micro N/A
3 $2.09 $2.39/micro $1.99 $2.29/stove N/A
4 $1.69 N/A $1.99 $1.49/stove $2.39
5 $1.29 N/A N/A $2.29/stove N/A
6 $2.09 $1.89/stove $2.49 N/A N/A
7 N/A $1.39/micro $2.49 $2.29/stove $2.39
8 N/A N/A $1.99 $2.29/micro N/A
9 N/A $2.39/stove $2.49 N/A $1.99

10 $2.09 N/A $2.49 $1.49/micro $1.99
11 $1.69 $1.39/micro N/A N/A N/A
12 $1.29 $2.39/micro N/A N/A $2.39
13 $1.69 $1.89/stove N/A $1.49/micro $2.39

200

------------------------------- Shelf Talker=Yes -------------------------------

Client Client Line Regional Private National
Obs Brand Extension Brand Label Competitor

14 $1.69 N/A $1.99 $2.29/stove $2.39
15 N/A N/A $1.99 $1.49/micro N/A
16 $2.09 $2.39/stove $1.99 N/A $1.99
17 N/A $1.39/stove N/A $2.29/stove $1.99
18 $2.09 $1.89/micro N/A $2.29/micro $2.39
19 $1.69 N/A $2.49 $2.29/micro $1.99
20 $2.09 N/A N/A $1.49/stove $1.99
21 N/A $2.39/micro $2.49 N/A $1.99
22 $1.29 $2.39/stove $2.49 $1.49/stove N/A
23 $1.69 $1.89/micro $2.49 N/A N/A
24 $1.29 $1.89/stove $1.99 N/A $1.99
25 $1.29 $1.39/micro $1.99 $1.49/micro N/A
26 $2.09 $1.39/stove $2.49 N/A $2.39

One issue remains to be resolved regarding this design and that concerns the role of the shelf-talker when the
client line extension is not available. The second block of the design consists of choice sets in which the shelf-
talker is present and calls attention to the client line extension. However, in four of those choice sets, the client
line extension is unavailable. This problem can be handled in several ways. Here are a few:

� Rerun the design creation and evaluation programs excluding all choice sets with shelf-talker present and
client line extension unavailable. However, this requires changing the model because the excluded cell
will make unestimable the interaction between client-line-extension price and shelf-talker. Furthermore,
the shelf-talker variable will almost certainly no longer be balanced. In fact our best design when we tried
this (not shown) had the shelf-talker in only 10 of 26 choice sets.

� Move the choice sets with client line extension unavailable to the no-shelf-talker block and rerandomize.
Then the shelf-talker is on for all of the last nine choice sets.

� Let the shelf-talker go on and off as needed.

� Let the shelf-talker call attention to a brand that happens to be out of stock. It is easy to imagine this
happening in a real store.

Other options are available as well. No one approach is obviously superior to the alternatives. For this example,
we will take the latter approach and allow the shelf-talker to be on even when the client line extension is not
available. Note that if the shelf-talker is turned off when the client line extension is not available then the design
must be manually modified to reflect this fact.

Generating Artificial Data
This DATA step generates some artificial data.

%let m = 6;
%let mm1 = %eval(&m - 1);
%let n = 26;
data _null_;

array brands[&m] _temporary_ (5 7 1 2 3 -2);
array u[&m];
do rep = 1 to 300;

if mod(rep, 2) then put;
put rep 3. +2 @@;

201

do j = 1 to &n;
set sasuser.finchdes point=j;
do brand = 1 to &m;

u[brand] = brands[brand] + 2 * normal(7);
end;

if x4 = 1 then u2 = u2 + 1; /* shelf-talker */
if x3 = 1 then u2 = u2 + 1; /* microwave */
if x7 = 1 then u4 = u4 + 1; /* microwave */
* pull prices out of the formats;
if x1 ne 4 then u1 = u1 - input(substr(put(x1,f1_.),2),4.);

else u1 = .;
if x2 ne 4 then u2 = u2 - input(substr(put(x2,f2_.),2),4.);

else u2 = .;
if x5 ne 3 then u3 = u3 - input(substr(put(x5,f5_.),2),4.);

else u3 = .;
if x6 ne 3 then u4 = u4 - input(substr(put(x6,f6_.),2),4.);

else u4 = .;
if x8 ne 3 then u5 = u5 - input(substr(put(x8,f8_.),2),4.);

else u5 = .;

* Choose the most preferred alternative.;
m = max(of u1-u&m);
if n(u1) and abs(u1 - m) < 1e-4 then c = 1;
else if n(u2) and abs(u2 - m) < 1e-4 then c = 2;
else if n(u3) and abs(u3 - m) < 1e-4 then c = 3;
else if n(u4) and abs(u4 - m) < 1e-4 then c = 4;
else if n(u5) and abs(u5 - m) < 1e-4 then c = 5;
else c = 6;
put +(-1) c @@;
end;

end;
stop;
run;

This DATA step reads the data.

data results;
input Subj (choose1-choose&n) (1.) @@;
datalines;

1 22251224212125422245212222 2 51111224232221622211222522
3 22251123512221422216222121 4 11211224242215422211222212
5 22211223552225422241222222 6 12211224252211425214222122
.
.
.

297 22441223242211322214221122 298 22251224512221422245222112
299 52211224242251422211212122 300 22211224262221422251222212
;

202

Processing the Data
The analysis proceeds in a fashion similar to before. For analysis, the design will have four factors as shown
by the variables in the data set KEY. Brand is the alternative name; its values are directly read from the KEY
in-stream data. Price is an attribute whose values will be constructed from the factors x1, x2, x5, x6, and
x8 in SASUSER.FINCHDES data set. Micro, the microwave factor,is constructed from x3 for the client line
extension and x7 for the private label. Shelf, the shelf talker factor, is created from x4 for the extension.

data key;
input Brand $ 1-10 (Price Micro Shelf) ($);
datalines;

Client x1 . .
Extension x2 x3 x4
Regional x5 . .
Private x6 x7 .
National x8 . .
None . . .
;

The Price factors are different for each alternative. Therefore, we will map the factors in the design from
values of 1, 2, ... directly to prices before a common price factor is created. Not available will be coded as a price
of zero.

proc format;
value p1_ 1 = ’1.29’ 2 = ’1.69’ 3 = ’2.09’ 4 = ’0’;
value p2_ 1 = ’1.39’ 2 = ’1.89’ 3 = ’2.39’ 4 = ’0’;
value p5_ 1 = ’1.99’ 2 = ’2.49’ 3 = ’0’;
value p6_ 1 = ’1.49’ 2 = ’2.29’ 3 = ’0’;
value p8_ 1 = ’1.99’ 2 = ’2.39’ 3 = ’0’;
run;

data temp;
set sasuser.finchdes;
x1 = input(put(x1, p1_.), 5.);
x2 = input(put(x2, p2_.), 5.);
x5 = input(put(x5, p5_.), 5.);
x6 = input(put(x6, p6_.), 5.);
x8 = input(put(x8, p8_.), 5.);
keep x1-x8;
run;

The design is converted from one row per choice set to one row for each alternative of each choice set using
the %MKTROLL macro. The macro %MKTROLL is used to create the data set ROLLED from TEMP using
the mapping in KEY and using the variable Brand as the alternative ID variable. By default, all of the original
factors in the design= data set are dropped after they are used to create the factors in the out= data set. In this
case, we specify keep=x1 x2 x5 x6 x8 because we need to keep all of the original price factors to use in
cross effects.

%mktroll(design=temp, key=key, alt=brand, out=rolled, keep=x1 x2 x5 x6 x8)

These next steps show the input and results for the first two choice sets. The data set is converted from a design
matrix with one row per choice set to a design matrix with one row per alternative per choice set.

proc print data=temp(obs=2); run;

proc print data=rolled(obs=12); run;

203

Consumer Food Product Example

Obs x1 x2 x3 x4 x5 x6 x7 x8

1 1.29 1.89 1 No 1.99 0.00 1 1.99
2 1.29 1.39 2 No 1.99 2.29 1 0.00

Consumer Food Product Example

Obs Set Brand Price Micro Shelf x1 x2 x5 x6 x8

1 1 Client 1.29 . . 1.29 1.89 1.99 0.00 1.99
2 1 Extension 1.89 1 2 1.29 1.89 1.99 0.00 1.99
3 1 Regional 1.99 . . 1.29 1.89 1.99 0.00 1.99
4 1 Private 0.00 1 . 1.29 1.89 1.99 0.00 1.99
5 1 National 1.99 . . 1.29 1.89 1.99 0.00 1.99
6 1 None . . . 1.29 1.89 1.99 0.00 1.99

7 2 Client 1.29 . . 1.29 1.39 1.99 2.29 0.00
8 2 Extension 1.39 2 2 1.29 1.39 1.99 2.29 0.00
9 2 Regional 1.99 . . 1.29 1.39 1.99 2.29 0.00

10 2 Private 2.29 1 . 1.29 1.39 1.99 2.29 0.00
11 2 National 0.00 . . 1.29 1.39 1.99 2.29 0.00
12 2 None . . . 1.29 1.39 1.99 2.29 0.00

Consider the first two observations in the data set ROLLED.

Set 1, Alternative 1

Brand = “Client” the brand for this alternative
Price = x1 = 1.29 the price of this alternative
Micro = . does not apply to this brand
Shelf = . does not apply to this brand
x1 = 1.29 the price of the client brand in this choice set
x2 = 1.89 the price of the extension in this choice set
x5 = 1.99 the price of the regional competitor in this choice set
x6 = 0, private label unavailable in this choice set
x8 = 1.99 the price of the national competitor in this choice set

Set 1, Alternative 2

Brand = “Extension” the brand for this alternative
Price = x2 = 1.89 the price of this alternative
Micro = 1 Microwave, yes
Shelf = 2 Shelf Talker, No
x1 = 1.29 the price of the client brand in this choice set
x2 = 1.89 the price of the extension in this choice set
x5 = 1.99 the price of the regional competitor in this choice set
x6 = 0, private label unavailable in this choice set
x8 = 1.99 the price of the national competitor in this choice set

Notice that x1 through x8 are constant within each choice set. The variable x1 is the price of alternative one,
which is the same no matter which alternative it is stored with.

The data and design are merged in the usual way using the %MKTMERGE macro.

204

%mktmerge(design=rolled, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choose1-choose&n)

proc print data=res2(obs=18); run;

Here are the data and design for the first two choice sets for the first subject.

Consumer Food Product Example

Obs Subj Set Brand Price Micro Shelf x1 x2 x5 x6 x8 c

1 1 1 Client 1.29 . . 1.29 1.89 1.99 0.00 1.99 2
2 1 1 Extension 1.89 1 2 1.29 1.89 1.99 0.00 1.99 1
3 1 1 Regional 1.99 . . 1.29 1.89 1.99 0.00 1.99 2
4 1 1 Private 0.00 1 . 1.29 1.89 1.99 0.00 1.99 2
5 1 1 National 1.99 . . 1.29 1.89 1.99 0.00 1.99 2
6 1 1 None . . . 1.29 1.89 1.99 0.00 1.99 2

7 1 2 Client 1.29 . . 1.29 1.39 1.99 2.29 0.00 2
8 1 2 Extension 1.39 2 2 1.29 1.39 1.99 2.29 0.00 1
9 1 2 Regional 1.99 . . 1.29 1.39 1.99 2.29 0.00 2

10 1 2 Private 2.29 1 . 1.29 1.39 1.99 2.29 0.00 2
11 1 2 National 0.00 . . 1.29 1.39 1.99 2.29 0.00 2
12 1 2 None . . . 1.29 1.39 1.99 2.29 0.00 2

We need to do a few more things before we are ready to code. Since we will be treating Price as a quantitative
factor (not a class variable), we need to convert the missing price for the constant “None” alternative to zero.
We also need to convert the missings for when Micro and Shelf do not apply to 2 for “No”. Finally, we need
to output just the alternatives that are available (those with a nonzero price and also the none alternative).

data res3;
set res2;
if price = . then price = 0;
if micro = . then micro = 2;
if shelf = . then shelf = 2;
if brand = ’None’ or price ne 0;
format micro shelf yn.;
run;

proc print data=res3(obs=10); run;

Consumer Food Product Example

Obs Subj Set Brand Price Micro Shelf x1 x2 x5 x6 x8 c

1 1 1 Client 1.29 No No 1.29 1.89 1.99 0.00 1.99 2
2 1 1 Extension 1.89 Yes No 1.29 1.89 1.99 0.00 1.99 1
3 1 1 Regional 1.99 No No 1.29 1.89 1.99 0.00 1.99 2
4 1 1 National 1.99 No No 1.29 1.89 1.99 0.00 1.99 2
5 1 1 None 0.00 No No 1.29 1.89 1.99 0.00 1.99 2

6 1 2 Client 1.29 No No 1.29 1.39 1.99 2.29 0.00 2
7 1 2 Extension 1.39 No No 1.29 1.39 1.99 2.29 0.00 1
8 1 2 Regional 1.99 No No 1.29 1.39 1.99 2.29 0.00 2
9 1 2 Private 2.29 Yes No 1.29 1.39 1.99 2.29 0.00 2

10 1 2 None 0.00 No No 1.29 1.39 1.99 2.29 0.00 2

205

Cross Effects
These next steps code the design for analysis.

proc transreg data=res3 design=5000 nozeroconstant norestoremissing;
model class(brand / zero=’None’)

class(brand / zero=’None’ separators=’’ ’ ’) * identity(price)
class(shelf micro / lprefix=12 12 zero=’No’ ’No’)
identity(x1 x2 x5 x6 x8) *
class(brand / zero=’None’ separators=’ ’ ’ on ’) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept
where=(brand = ’None’ or price ne 0));

id subj set c;
label x1 = ’CE, Client’

x2 = ’CE, Extension’
x5 = ’CE, Regional’
x6 = ’CE, Private’
x8 = ’CE, National’
shelf = ’Shelf Talker’
micro = ’Microwave’;

run;

The specification class(brand / zero=’None’) creates the brand effects for each brand except the
none alternative. The specification class(brand / zero=’None’ separators=” ’ ’) * iden-
tity(price) creates the alternative-specific price effects. The zero= ’None’ option, like zero=’Home’
and other zero=’literal-string’ options we have seen in previous examples, names the actual formatted value of
the class variable that is to be excluded from the coded variables because the coefficient will be zero. Do not
confuse zero=none and zero=’None’. The zero=none option specifies that you want all dummy vari-
ables to be created, even including the last level. In contrast, the option zero=’None’ (or zero= any quoted
string) names a specific formatted value, in this case “None”, for which dummy variables are not to be created.
The separators=” ’ ’ option in the class specification specifies the separators that are used to construct
the labels for the main effect and interaction terms. The main-effects separator, which is the first separa-
tors= value, ”, is ignored since lprefix=0. Specifying ’ ’ as the second value creates labels of the form
brand-blank-price instead of the default brand-blank-asterisk-blank-price. The specification class(shelf
micro / lprefix=12 12 zero=’No’ ’No’) names the shelf talker and microwave variables as cate-
gorical variables and creates dummy variables for the “Yes” categories, not the “No” categories. The first ’No’
applies to Shelf and the second ’No’ applies to Micro. The specification identity(x1 x2 x5 x6
x8) * class(brand / zero=’None’ separators=’ ’ ’ on ’) creates the cross effects. The
separators= option is specified with a second value of ’ on ’ to create cross effect labels like “CE, Client
on Extension” (where CE means cross effect). More will be said on the cross effects when we look at the actual
coded values in the next few pages.

Note that PROC TRANSREG produces the following warning twice.

WARNING: This usage of * sets one group’s slope to zero. Specify | to allow
all slopes and intercepts to vary. Alternatively, specify CLASS(vars)
* identity(vars) identity(vars) for separate within group functions
and a common intercept. This is a change from Version 6.

This is because on two occasions classwas interacted with identity using the asterisk instead of the vertical
bar. In a linear model, this might be a sign of a coding error, so the procedure prints a warning. If you get this
warning while coding a choice model specifying zero=’constant-alternative-level’, you can safely ignore it.
Still, it is always good to print out one or more coded choice sets to check the coding as we will do next. Before
we look at the coded data, recall that the design for the first choice sets is as follows.

206

Client Client Line Regional Private National
Obs Brand Extension Brand Label Competitor

1 $1.29 $1.89/micro $1.99 N/A $1.99
2 $1.29 $1.39/stove $1.99 $2.29/micro N/A
3 $2.09 $2.39/micro $1.99 $2.29/stove N/A
4 $1.69 N/A $1.99 $1.49/stove $2.39
5 $1.29 N/A N/A $2.29/stove N/A

We will look at the coded data set in several ways. First, here are the Brand, Price, c, microwave and shelf
talker variables, printed by choice set. Information from just the first subject and the first five choice sets is
printed.

proc print data=coded(obs=23) label;
var Brand Price c Shelf Micro;
by set;
run;

Consumer Food Product Example

------------------------------------ Set=1 -------------------------------------

Shelf
Obs Brand Price c Talker Microwave

1 Client 1.29 2 No No
2 Extension 1.89 1 No Yes
3 Regional 1.99 2 No No
4 National 1.99 2 No No
5 None 0.00 2 No No

------------------------------------ Set=2 -------------------------------------

Shelf
Obs Brand Price c Talker Microwave

6 Client 1.29 2 No No
7 Extension 1.39 1 No No
8 Regional 1.99 2 No No
9 Private 2.29 2 No Yes

10 None 0.00 2 No No

------------------------------------ Set=3 -------------------------------------

Shelf
Obs Brand Price c Talker Microwave

11 Client 2.09 2 No No
12 Extension 2.39 1 No Yes
13 Regional 1.99 2 No No
14 Private 2.29 2 No No
15 None 0.00 2 No No

207

------------------------------------ Set=4 -------------------------------------

Shelf
Obs Brand Price c Talker Microwave

16 Client 1.69 2 No No
17 Regional 1.99 2 No No
18 Private 1.49 2 No No
19 National 2.39 1 No No
20 None 0.00 2 No No

------------------------------------ Set=5 -------------------------------------

Shelf
Obs Brand Price c Talker Microwave

21 Client 1.29 1 No No
22 Private 2.29 2 No No
23 None 0.00 2 No No

Unlike all previous examples, the number of alternatives is not the same in all of the choice sets. The first choice
set consists of five alternatives including “None”. The private label brand is not available in this choice set.
The second choice set consists of five alternatives including “None”. The national competitor are not available
in this choice set. The fifth choice set consists of three alternatives including “None”. The extension, regional
competitor, and national competitor are not available in this choice set.

Here are the brand effects and alternative-specific price effects.

proc print data=coded(obs=5) label;
id Brand;
var BrandClient -- BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var BrandClientPrice --BrandPrivatePrice;
run;

Consumer Food Product Example

Brand Client Extension Regional National Private

Client 1 0 0 0 0
Extension 0 1 0 0 0
Regional 0 0 1 0 0
National 0 0 0 1 0
None 0 0 0 0 0

Consumer Food Product Example

Client Extension Regional National Private
Brand Price Price Price Price Price Price

Client 1.29 1.29 0.00 0.00 0.00 0
Extension 1.89 0.00 1.89 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0

208

The brand effects and alternative-specific price effects are similar to what we have seen previously. The difference
is the presence of all zero columns for unavailable alternatives, in this case the private label. This following code
prints the cross effects along with Brand and Price for the first choice set.

proc print data=coded(obs=5) label;
id Brand Price;
var x1BrandClient -- x1BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var x2BrandClient -- x2BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var x5BrandClient -- x5BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var x6BrandClient -- x6BrandPrivate;
run;

proc print data=coded(obs=5) label;
id Brand Price;
var x8BrandClient -- x8BrandPrivate;
run;

The cross effects are printed in panels. This first panel shows the terms that capture the effect of the client brand
being available at $1.29 on the utility of the other brands. These terms represent the interaction of the continuous
and constant within choice set variable x1 = 1.29 and the binary coded brand effects. The term “CE, Client
on Extension” represents the cross effect of the client brand at its price on the utility of the extension. The term
“CE, Client on Client” represents in some sense the cross effect of the client brand at its price on the utility of the
client brand. In other words, it is exactly the same as the client price effect and hence will have a zero coefficient
in the analysis.

Consumer Food Product Example

CE, Client CE, Client CE, Client
CE, Client on on on CE, Client

Brand Price on Client Extension Regional National on Private

Client 1.29 1.29 0.00 0.00 0.00 0
Extension 1.89 0.00 1.29 0.00 0.00 0
Regional 1.99 0.00 0.00 1.29 0.00 0
National 1.99 0.00 0.00 0.00 1.29 0
None 0.00 0.00 0.00 0.00 0.00 0

This next panel shows the terms that capture the effect of the extension being available at $1.89 on the utility of
the other brands. These terms represent the interaction of the continuous and constant within choice set variable
x2 = 1.89 and the binary coded brand effects. The term “CE, Extension on Regional” represents the cross
effect of the client brand extension at its price on the utility of the regional competitor. The term “CE, Extension
on Extension” represents in some sense the cross effect of the extension at its price on the utility of the extension.
In other words, it is exactly the same as the extension price effect and hence will have a zero coefficient in the
analysis.

209

Consumer Food Product Example

CE, CE, CE,
CE, Extension Extension Extension CE,

Extension on on on Extension
Brand Price on Client Extension Regional National on Private

Client 1.29 1.89 0.00 0.00 0.00 0
Extension 1.89 0.00 1.89 0.00 0.00 0
Regional 1.99 0.00 0.00 1.89 0.00 0
National 1.99 0.00 0.00 0.00 1.89 0
None 0.00 0.00 0.00 0.00 0.00 0

Similarly, this next panel shows the terms that capture the effect of the regional competitor being available at
$1.99 on the utility of the other brands.

Consumer Food Product Example

CE, CE, CE,
CE, Regional Regional Regional CE,

Regional on on on Regional
Brand Price on Client Extension Regional National on Private

Client 1.29 1.99 0.00 0.00 0.00 0
Extension 1.89 0.00 1.99 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0

This next panel shows the private label, unavailable in this choice set, has no effect on the utility of the brands in
this set.

Consumer Food Product Example

CE, CE, CE, CE, CE,
Private on Private on Private on Private on Private on

Brand Price Client Extension Regional National Private

Client 1.29 0 0 0 0 0
Extension 1.89 0 0 0 0 0
Regional 1.99 0 0 0 0 0
National 1.99 0 0 0 0 0
None 0.00 0 0 0 0 0

This next panel shows the terms that capture the effect of the national competitor being available at $1.99 on the
utility of the other brands.

210

Consumer Food Product Example

CE, CE, CE,
CE, National National National CE,

National on on on National
Brand Price on Client Extension Regional National on Private

Client 1.29 1.99 0.00 0.00 0.00 0
Extension 1.89 0.00 1.99 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0

Coding and Fitting the Cross Effects Model
These next steps aggregate, code, and perform the analysis. This is the logical order to do things: aggregate
then code and analyze the data. The data set size is greatly reduced by the aggregation, which makes both the
TRANSREG and the PHREG steps run in just a few seconds. Aggregation is faster too since the aggregation is
based on a smaller number of uncoded variables. We coded before aggregating previously just to make it easier
to show the results of the coding.

proc summary data=res3 nway;
class set brand price shelf micro x1 x2 x5 x6 x8 c;
output out=agg(drop=_type_);
run;

proc print; where set = 1; run;

All of the variables used in the analysis are named as class variables in PROC SUMMARY. PROC SUMMARY
reduces the data set from 34,500 observations to 209. Here are the aggregated data for the first choice set.

Consumer Food Product Example

Obs Set Brand Price Shelf Micro x1 x2 x5 x6 x8 c _FREQ_

1 1 Client 1.29 No No 1.29 1.89 1.99 0 1.99 1 68
2 1 Client 1.29 No No 1.29 1.89 1.99 0 1.99 2 232
3 1 Extension 1.89 No Yes 1.29 1.89 1.99 0 1.99 1 225
4 1 Extension 1.89 No Yes 1.29 1.89 1.99 0 1.99 2 75
5 1 National 1.99 No No 1.29 1.89 1.99 0 1.99 1 6
6 1 National 1.99 No No 1.29 1.89 1.99 0 1.99 2 294
7 1 None 0.00 No No 1.29 1.89 1.99 0 1.99 2 300
8 1 Regional 1.99 No No 1.29 1.89 1.99 0 1.99 1 1
9 1 Regional 1.99 No No 1.29 1.89 1.99 0 1.99 2 299

In the first choice set, the client brand was chosen (c = 1) a total of -freq- = 68 times and not chosen (c = 2)
a total of -freq- = 232 times. Each alternative was chosen and not chosen a total of 300 times, which is the
number of subjects. These next steps code and run the analysis.

211

proc transreg data=agg design=5000 nozeroconstant norestoremissing;
model class(brand / zero=’None’)

class(brand / zero=’None’ separators=’’ ’ ’) * identity(price)
class(shelf micro / lprefix=12 12 zero=’No’ ’No’)
identity(x1 x2 x5 x6 x8) *
class(brand / zero=’None’ separators=’ ’ ’ on ’) /
lprefix=0 order=data;

output out=coded(drop=_type_ _name_ intercept
where=(brand = ’None’ or price ne 0));

id set c _freq_;
label x1 = ’CE, Client’

x2 = ’CE, Extension’
x5 = ’CE, Regional’
x6 = ’CE, Private’
x8 = ’CE, National’
shelf = ’Shelf Talker’
micro = ’Microwave’;

run;

proc phreg data=coded;
strata set;
model c*c(2) = &_trgind / ties=breslow;
freq _freq_;
run;

PROC TRANSREG is run like before, except now the data set AGG is specified and the ID variable includes

-freq- , the frequency variable but not Subj the subject number variable. Analysis is the same as we have seen
previously with aggregate data. PROC PHREG is run to fit the mother logit model, complete with availability
cross effects.

Multinomial Logit Model Results
These steps produced the following results. (Recall that we used %phchoice(on) on page 71 to customize
the output from PROC PHREG.)

Consumer Food Product Example

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable _FREQ_
Ties Handling BRESLOW

212

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 1500 300 1200
2 2 1500 300 1200
3 3 1500 300 1200
4 4 1500 300 1200
5 5 900 300 600
6 6 1200 300 900
7 7 1500 300 1200
8 8 900 300 600
9 9 1200 300 900
10 10 1500 300 1200
11 11 900 300 600
12 12 1200 300 900
13 13 1500 300 1200
14 14 1500 300 1200
15 15 900 300 600
16 16 1500 300 1200
17 17 1200 300 900
18 18 1500 300 1200
19 19 1500 300 1200
20 20 1200 300 900
21 21 1200 300 900
22 22 1500 300 1200
23 23 1200 300 900
24 24 1500 300 1200
25 25 1500 300 1200
26 26 1500 300 1200

Total 34500 7800 26700

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Consumer Food Product Example

The PHREG Procedure

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 111923.05 98180.822
AIC 111923.05 98244.822
SBC 111923.05 98467.602

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 13742.2313 32 <.0001
Score 15093.5363 32 <.0001
Wald 4823.7301 32 <.0001

213

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Client 1 5.46733 0.85358 41.0265 <.0001
Extension 1 5.58334 0.86685 41.4861 <.0001
National 1 3.50597 1.13426 9.5541 0.0020
Regional 1 3.80078 1.47533 6.6369 0.0100
Private 1 3.13270 0.71627 19.1287 <.0001

Client Price 1 -0.67421 0.32250 4.3704 0.0366
Extension Price 1 -0.07049 0.31052 0.0515 0.8204
National Price 1 -0.22402 0.38973 0.3304 0.5654
Regional Price 1 -1.18081 0.65386 3.2613 0.0709
Private Price 1 -0.96577 0.28492 11.4894 0.0007

Shelf Talker Yes 1 0.61900 0.08419 54.0569 <.0001
Microwave Yes 1 0.72858 0.07334 98.7000 <.0001

CE, Client on Client 0 0 . . .
CE, Client on Extension 1 0.28194 0.31256 0.8137 0.3670
CE, Client on National 1 -0.06563 0.33552 0.0383 0.8449
CE, Client on Regional 1 -0.06821 0.36875 0.0342 0.8532
CE, Client on Private 1 0.30073 0.28794 1.0908 0.2963

CE, Extension on Client 1 0.46570 0.29571 2.4801 0.1153
CE, Extension on Extension 0 0 . . .
CE, Extension on National 1 0.19053 0.32421 0.3454 0.5567
CE, Extension on Regional 1 -0.09000 0.35402 0.0646 0.7993
CE, Extension on Private 1 0.14278 0.29837 0.2290 0.6323

CE, Regional on Client 1 0.26312 0.18077 2.1188 0.1455
CE, Regional on Extension 1 0.29864 0.18450 2.6201 0.1055
CE, Regional on National 1 0.33478 0.18863 3.1497 0.0759
CE, Regional on Regional 0 0 . . .
CE, Regional on Private 1 0.13963 0.18898 0.5459 0.4600

CE, Private on Client 1 -0.29806 0.28888 1.0646 0.3022
CE, Private on Extension 1 -0.20526 0.28899 0.5045 0.4775
CE, Private on National 1 -0.40419 0.30925 1.7082 0.1912
CE, Private on Regional 1 -0.28243 0.32123 0.7730 0.3793
CE, Private on Private 0 0 . . .

CE, National on Client 1 0.02888 0.22009 0.0172 0.8956
CE, National on Extension 1 0.08796 0.22309 0.1555 0.6934
CE, National on National 0 0 . . .
CE, National on Regional 1 0.32827 0.29212 1.2628 0.2611
CE, National on Private 1 0.0004496 0.23537 0.0000 0.9985

Since the number of alternatives is not constant within each choice set, the summary table has nonconstant
numbers of alternatives and numbers not chosen. The number chosen, 300 (or one per subject per choice set),
is constant, since each subject always chooses one alternative from each choice set regardless of the number of
alternatives. The first choice set has 1500 alternatives, 5 available times 300 subjects; whereas the fifth choice
set has 900 alternatives, 3 available times 300 subjects.

The most to least preferred brands are: client line extension, client brand, regional competitor, national competi-
tor, private label, and finally the none alternative. The price effects are all negative. Both the shelf-talker and the
microwaveable option have positive utility. The cross effects are nonsignificant.

214

Modeling Subject Attributes
This example uses the same design and data as we have just seen, but this time we have some demographic
information about our respondents that we wish to model. The DATA step below reads a subject number, the
choices, and respondent age and income (in thousands of dollars). The data from two subjects appear on one
line.

data results;
input Subj (choose1-choose&n) (1.) age income @@;
datalines;

1 22251224212125422245212222 33 44 2 51111224232221622211222522 52 82
3 22251123512221422216222121 51 136 4 11211224242215422211222212 60 108
5 22211223552225422241222222 24 34 6 12211224252211425214222122 24 38
.
.
.

297 22441223242211322214221122 31 38 298 22251224512221422245222112 24 20
299 52211224242251422211212122 48 49 300 22211224262221422251222212 38 51
;

Merging the data and design is no different than we saw previously.

%mktmerge(design=rolled, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choose1-choose&n)

proc print data=res2;
by subj set;
where (subj = 1 and set = 1) or

(subj = 2 and set = 2) or
(subj = 3 and set = 3) or
(subj = 300 and set = 26);

run;

Here is a small sample of the data.

Consumer Food Product Example

--------------------------------- Subj=1 Set=1 ---------------------------------

Obs Age Income Brand Price Micro Shelf x1 x2 x5 x6 x8 c

1 33 44 Client 1.29 . . 1.29 1.89 1.99 0 1.99 2
2 33 44 Extension 1.89 1 2 1.29 1.89 1.99 0 1.99 1
3 33 44 Regional 1.99 . . 1.29 1.89 1.99 0 1.99 2
4 33 44 Private 0.00 1 . 1.29 1.89 1.99 0 1.99 2
5 33 44 National 1.99 . . 1.29 1.89 1.99 0 1.99 2
6 33 44 None . . . 1.29 1.89 1.99 0 1.99 2

--------------------------------- Subj=2 Set=2 ---------------------------------

Obs Age Income Brand Price Micro Shelf x1 x2 x5 x6 x8 c

163 52 82 Client 1.29 . . 1.29 1.39 1.99 2.29 0 1
164 52 82 Extension 1.39 2 2 1.29 1.39 1.99 2.29 0 2
165 52 82 Regional 1.99 . . 1.29 1.39 1.99 2.29 0 2
166 52 82 Private 2.29 1 . 1.29 1.39 1.99 2.29 0 2
167 52 82 National 0.00 . . 1.29 1.39 1.99 2.29 0 2
168 52 82 None . . . 1.29 1.39 1.99 2.29 0 2

215

--------------------------------- Subj=3 Set=3 ---------------------------------

Obs Age Income Brand Price Micro Shelf x1 x2 x5 x6 x8 c

325 51 136 Client 2.09 . . 2.09 2.39 1.99 2.29 0 2
326 51 136 Extension 2.39 1 2 2.09 2.39 1.99 2.29 0 1
327 51 136 Regional 1.99 . . 2.09 2.39 1.99 2.29 0 2
328 51 136 Private 2.29 2 . 2.09 2.39 1.99 2.29 0 2
329 51 136 National 0.00 . . 2.09 2.39 1.99 2.29 0 2
330 51 136 None . . . 2.09 2.39 1.99 2.29 0 2

------------------------------- Subj=300 Set=26 --------------------------------

Obs Age Income Brand Price Micro Shelf x1 x2 x5 x6 x8 c

46795 38 51 Client 2.09 . . 2.09 1.39 2.49 0 2.39 2
46796 38 51 Extension 1.39 2 1 2.09 1.39 2.49 0 2.39 1
46797 38 51 Regional 2.49 . . 2.09 1.39 2.49 0 2.39 2
46798 38 51 Private 0.00 1 . 2.09 1.39 2.49 0 2.39 2
46799 38 51 National 2.39 . . 2.09 1.39 2.49 0 2.39 2
46800 38 51 None . . . 2.09 1.39 2.49 0 2.39 2

You can see that the demographic information matches the raw data and is constant within subject. The rest of
the data processing is virtually the same as well. The only difference is since we have demographic information
we won’t aggregate. There would have to be ties in both the demographics and choice for aggregation to have
any effect.

data res3;
set res2;
if price = . then price = 0;
if micro = . then micro = 2;
if shelf = . then shelf = 2;
if brand = ’None’ or price ne 0;
format micro shelf yn.;
run;

proc print data=res3(obs=10); run;

Consumer Food Product Example

Obs Subj Age Income Set Brand Price Micro Shelf x1 x2 x5 x6 x8 c

1 1 33 44 1 Client 1.29 No No 1.29 1.89 1.99 0.00 1.99 2
2 1 33 44 1 Extension 1.89 Yes No 1.29 1.89 1.99 0.00 1.99 1
3 1 33 44 1 Regional 1.99 No No 1.29 1.89 1.99 0.00 1.99 2
4 1 33 44 1 National 1.99 No No 1.29 1.89 1.99 0.00 1.99 2
5 1 33 44 1 None 0.00 No No 1.29 1.89 1.99 0.00 1.99 2

6 1 33 44 2 Client 1.29 No No 1.29 1.39 1.99 2.29 0.00 2
7 1 33 44 2 Extension 1.39 No No 1.29 1.39 1.99 2.29 0.00 1
8 1 33 44 2 Regional 1.99 No No 1.29 1.39 1.99 2.29 0.00 2
9 1 33 44 2 Private 2.29 Yes No 1.29 1.39 1.99 2.29 0.00 2

10 1 33 44 2 None 0.00 No No 1.29 1.39 1.99 2.29 0.00 2

We use PROC TRANSREG to code, adding Age and Income to the analysis.

216

proc transreg data=res3 design=5000 nozeroconstant norestoremissing;
model class(brand / zero=’None’)

identity(age income) * class(brand / zero=’None’ separators=’’ ’, ’)
class(brand / zero=’None’ separators=’’ ’ ’) * identity(price)
class(shelf micro / lprefix=12 12 zero=’No’ ’No’)
identity(x1 x2 x5 x6 x8) *
class(brand / zero=’None’ separators=’ ’ ’ on ’) /
lprefix=0 order=data;

output out=coded(drop=_type_ _name_ intercept
where=(brand = ’None’ or price ne 0));

id subj set c;
label x1 = ’CE, Client’

x2 = ’CE, Extension’
x5 = ’CE, Regional’
x6 = ’CE, Private’
x8 = ’CE, National’
shelf = ’Shelf Talker’
micro = ’Microwave’;

run;

The Age and Income variables are incorporated into the analysis by interacting them with Brand. Demo-
graphic variables must be interacted with attributes to have any effect. If identity(age income) had been
specified instead of identity(age income) * class(brand / zero=’None’ separators=”
’, ’) the coefficients for age and income would be zero. This is because age and income are constant within
each choice set and subject combination, that is constant within each stratum. The second separator ’, ’ is
used to create names for the brand/demographic interaction terms like “Age, Client”.

These next steps print the first coded choice set.

proc print data=coded(obs=5) label;
id brand price;
var BrandClient -- BrandPrivate Shelf Micro c;
run;

proc print data=coded(obs=5 drop=Age) label;
id brand price;
var Age:;
run;

proc print data=coded(obs=5 drop=Income) label;
id brand price;
var Income:;
run;

proc print data=coded(obs=5) label;
id brand price;
var BrandClientPrice -- BrandPrivatePrice;
run;

proc print data=coded(obs=5 drop=x1) label; id brand price; var x1:; run;
proc print data=coded(obs=5 drop=x2) label; id brand price; var x2:; run;
proc print data=coded(obs=5 drop=x5) label; id brand price; var x5:; run;
proc print data=coded(obs=5 drop=x6) label; id brand price; var x6:; run;
proc print data=coded(obs=5 drop=x8) label; id brand price; var x8:; run;

Here is the coded data set for the first choice set. The part that is new is the second and third panel, which will
be used to capture the brand by age and brand by income effects.

Here are the attributes and the brand effects.

217

Consumer Food Product Example

Shelf
Brand Price Client Extension Regional National Private Talker Microwave c

Client 1.29 1 0 0 0 0 No No 2
Extension 1.89 0 1 0 0 0 No Yes 1
Regional 1.99 0 0 1 0 0 No No 2
National 1.99 0 0 0 1 0 No No 2
None 0.00 0 0 0 0 0 No No 2

Here are the age by brand effects.

Consumer Food Product Example

Age, Age, Age, Age, Age,
Brand Price Client Extension Regional National Private

Client 1.29 33 0 0 0 0
Extension 1.89 0 33 0 0 0
Regional 1.99 0 0 33 0 0
National 1.99 0 0 0 33 0
None 0.00 0 0 0 0 0

Here are the income by brand effects.

Consumer Food Product Example

Income, Income, Income, Income, Income,
Brand Price Client Extension Regional National Private

Client 1.29 44 0 0 0 0
Extension 1.89 0 44 0 0 0
Regional 1.99 0 0 44 0 0
National 1.99 0 0 0 44 0
None 0.00 0 0 0 0 0

Here are the alternative-specific price effects.

Consumer Food Product Example

Client Extension Regional National Private
Brand Price Price Price Price Price Price

Client 1.29 1.29 0.00 0.00 0.00 0
Extension 1.89 0.00 1.89 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0

Here are the client cross effects.

218

Consumer Food Product Example

CE, Client CE, Client CE, Client
CE, Client on on on CE, Client

Brand Price on Client Extension Regional National on Private

Client 1.29 1.29 0.00 0.00 0.00 0
Extension 1.89 0.00 1.29 0.00 0.00 0
Regional 1.99 0.00 0.00 1.29 0.00 0
National 1.99 0.00 0.00 0.00 1.29 0
None 0.00 0.00 0.00 0.00 0.00 0

Here are the extension cross effects.

Consumer Food Product Example

CE, CE, CE,
CE, Extension Extension Extension CE,

Extension on on on Extension
Brand Price on Client Extension Regional National on Private

Client 1.29 1.89 0.00 0.00 0.00 0
Extension 1.89 0.00 1.89 0.00 0.00 0
Regional 1.99 0.00 0.00 1.89 0.00 0
National 1.99 0.00 0.00 0.00 1.89 0
None 0.00 0.00 0.00 0.00 0.00 0

Here are the regional competitor cross effects.

Consumer Food Product Example

CE, CE, CE,
CE, Regional Regional Regional CE,

Regional on on on Regional
Brand Price on Client Extension Regional National on Private

Client 1.29 1.99 0.00 0.00 0.00 0
Extension 1.89 0.00 1.99 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0

Here are the private label cross effects.

Consumer Food Product Example

CE, CE, CE, CE, CE,
Private on Private on Private on Private on Private on

Brand Price Client Extension Regional National Private

Client 1.29 0 0 0 0 0
Extension 1.89 0 0 0 0 0
Regional 1.99 0 0 0 0 0
National 1.99 0 0 0 0 0
None 0.00 0 0 0 0 0

Here are the national competitor cross effects.

219

Consumer Food Product Example

CE, CE, CE,
CE, National National National CE,

National on on on National
Brand Price on Client Extension Regional National on Private

Client 1.29 1.99 0.00 0.00 0.00 0
Extension 1.89 0.00 1.99 0.00 0.00 0
Regional 1.99 0.00 0.00 1.99 0.00 0
National 1.99 0.00 0.00 0.00 1.99 0
None 0.00 0.00 0.00 0.00 0.00 0

The PROC PHREG specification is the same as we have used before with nonaggregated data.

ods exclude CensoredSummary;
ods output CensoredSummary=CS;

proc phreg data=coded;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

proc freq;
tables event * censored / list;
where n(stratum);
run;

This step took just about one minute and produced the following results.

Consumer Food Product Example

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 22944.047 9181.362
AIC 22944.047 9265.362
SBC 22944.047 9557.761

220

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 13762.6845 42 <.0001
Score 15106.4909 42 <.0001
Wald 4810.2570 42 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Client 1 5.62995 0.97320 33.4658 <.0001
Extension 1 6.08310 0.99039 37.7259 <.0001
Regional 1 3.57233 1.56325 5.2221 0.0223
National 1 3.95103 1.23858 10.1758 0.0014
Private 1 3.60708 0.84966 18.0227 <.0001

Age, Client 1 0.01298 0.01620 0.6420 0.4230
Age, Extension 1 0.00707 0.01661 0.1812 0.6703
Age, Regional 1 0.02711 0.01777 2.3269 0.1272
Age, National 1 0.00389 0.01736 0.0502 0.8227
Age, Private 1 0.0002107 0.01572 0.0002 0.9893

Income, Client 1 -0.01053 0.00618 2.8990 0.0886
Income, Extension 1 -0.01181 0.00635 3.4582 0.0629
Income, Regional 1 -0.01405 0.00694 4.1040 0.0428
Income, National 1 -0.00898 0.00666 1.8197 0.1773
Income, Private 1 -0.00701 0.00599 1.3711 0.2416

Client Price 1 -0.67517 0.32292 4.3716 0.0365
Extension Price 1 -0.05907 0.31148 0.0360 0.8496
Regional Price 1 -1.18447 0.65400 3.2802 0.0701
National Price 1 -0.22350 0.38996 0.3285 0.5665
Private Price 1 -0.96861 0.28537 11.5207 0.0007

Shelf Talker Yes 1 0.61980 0.08426 54.1031 <.0001
Microwave Yes 1 0.72954 0.07339 98.8078 <.0001

CE, Client on Client 0 0 . . .
CE, Client on Extension 1 0.28262 0.31296 0.8155 0.3665
CE, Client on Regional 1 -0.06499 0.36901 0.0310 0.8602
CE, Client on National 1 -0.06432 0.33588 0.0367 0.8481
CE, Client on Private 1 0.30177 0.28829 1.0957 0.2952

CE, Extension on Client 1 0.47752 0.29668 2.5907 0.1075
CE, Extension on Extension 0 0 . . .
CE, Extension on Regional 1 -0.07767 0.35478 0.0479 0.8267
CE, Extension on National 1 0.20479 0.32510 0.3968 0.5287
CE, Extension on Private 1 0.15603 0.29926 0.2719 0.6021

CE, Regional on Client 1 0.26281 0.18095 2.1095 0.1464
CE, Regional on Extension 1 0.29836 0.18468 2.6099 0.1062
CE, Regional on Regional 0 0 . . .
CE, Regional on National 1 0.33442 0.18881 3.1371 0.0765
CE, Regional on Private 1 0.13920 0.18915 0.5416 0.4618

CE, Private on Client 1 -0.29959 0.28938 1.0718 0.3005
CE, Private on Extension 1 -0.20689 0.28951 0.5107 0.4748
CE, Private on Regional 1 -0.28139 0.32178 0.7647 0.3819
CE, Private on National 1 -0.40533 0.30973 1.7126 0.1906
CE, Private on Private 0 0 . . .

221

CE, National on Client 1 0.03005 0.22031 0.0186 0.8915
CE, National on Extension 1 0.08905 0.22332 0.1590 0.6901
CE, National on Regional 1 0.33125 0.29231 1.2842 0.2571
CE, National on National 0 0 . . .
CE, National on Private 1 0.00142 0.23558 0.0000 0.9952

Consumer Food Product Example

The FREQ Procedure

Cumulative Cumulative
Event Censored Frequency Percent Frequency Percent
--

1 2 1200 15.38 1200 15.38
1 3 2100 26.92 3300 42.31
1 4 4500 57.69 7800 100.00

The coefficients for the age and income variables are not significant in this analysis. In previous examples, when
we used PROC FREQ to summarize the summary table, the PROC FREQ output had only one line. In this case,
since our choice sets have either 3, 4, or 5 alternatives, we have three rows, one for each size choice set.

When Balance is of Primary Importance
Sometimes it is very important to get a design that is as close to balanced as possible. More generally, sometimes
there is some criterion in which you want the design to be good that is not perfectly correlated with efficiency. A
strategy for those cases is to generate a number of designs, keep the most efficient few, then use the one that is
best in terms of the secondary criterion of interest. In this example, we use a macro to repeatedly generate 1000
designs, output 200 of the most efficient, then evaluate their balance.

title ’Consumer Food Product Example’;

%mktdes(factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +

(x6 < 3) + (x8 < 3)) <= 4),
run=plan)

%macro baleval(niter);

%do iter = 1 %to &niter;

data _null_;
seed = abs(1e6 * (1e-5 + time() - floor(time())));
call symput(’seed’, compress(put(seed, 12.0)));
run;

ods output efficiencies(persist=run)=e;

%mktdes(factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
iter=5, keep=1, run=optex, procopts=seed=&seed)

222

proc iml;
use design; read all into x;
use e(keep=DCriterion); read all into deff;
if &iter > 1 then do;

use balance; read all into balance; close balance;
end;

p = ncol(x); n = nrow(x);
bal = j(1, p, 0);
do j = 1 to p;

x1 = design(x[,j])[+,];
nc = ncol(x1);
bal[,j] = ssq(x1 - n / nc) / (nc - 1);
end;

bal = balance // (&seed || deff || sum(bal) || bal);
create balance from bal; append from bal;
quit;

proc means min data=balance noprint;
output min(col3)=min out=min;
run;

data small(drop=min);
set balance;
if _n_ = 1 then set min(keep=min);
if abs(col3 - min) <= 1e-6;
run;

proc sort; by descending col2; run;

proc print label noobs;
label col1 = ’Seed’ col2 = ’D-Efficiency’ col3 = ’Var Sum’;
title2 ’Design Balances’;
format col4-col11 5.2;
run;

%end;

%mend;

%baleval(200)

proc print label noobs data=balance;
label col1 = ’Seed’ col2 = ’D-Efficiency’ col3 = ’Var Sum’;
title2 ’Design Balances’;
format col4-col11 5.2;
run;

This code first uses the %MKTDES macro to create the candidate set. Then the %BALEVAL balance evaluation
macro is defined. This macro has a loop to repeatedly create designs and evaluate their balance. The DATA
step creates a random number seed based on clock time. Hence, no two runs of this macro will produce the
same results. The ods output statement using (persist=run) creates an output SAS data set from the
efficiencies table of PROC OPTEX. The %MKTDES macro is run to create five designs and output the best
one. The random number seed generated by the DATA step is used. Each design is read into PROC IML to
report on balance. The statements use design and read all into x read the design into PROC IML. The
statements

if &iter > 1 then do;
use balance; read all into balance; close balance;
end;

read previous results to which these results are appended. The statements p = ncol(x) and n = nrow(x)

223

store the number of columns and rows in the design matrix. The statement bal = j(1, p, 0) initial-
izes the results vector BAL to 0. The statements in the do loop compute the variance of the frequency of
occurrence for each level within each factor. The statement x1 = design(x[,j])[+,] counts the num-
ber of times each level appears. The statement bal[,j] = ssq(x1 - n / nc) / (nc - 1) computes
the variance. Note that n / nc is the expected frequency for an nc-level factor. Then bal = balance
// (&seed || deff || sum(bal) || bal) stores the random number seed, D-efficiency, sum of the
variances and each column’s variance in a SAS data set. The PROC MEANS, DATA, PROC SORT and PROC
PRINT steps print information about the most balanced design found so far. Outside the macro, all of the balance
information is printed. Here are some of the results.

Consumer Food Product Example
Design Balances

Seed D-Efficiency Var Sum COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11

381303 84.0781 1.66667 0.33 0.33 0.00 0.00 0.33 0.33 0.00 0.33

Consumer Food Product Example
Design Balances

Seed D-Efficiency Var Sum COL4 COL5 COL6 COL7 COL8 COL9 COL10 COL11

375419 83.5921 10.3333 0.33 1.00 2.00 2.00 2.33 0.33 0.00 2.33
707520 83.3048 12.0000 1.67 0.33 0.00 0.00 2.33 1.33 2.00 4.33
873439 83.4668 11.3333 0.33 1.00 0.00 0.00 6.33 1.33 0.00 2.33

.

.

.
381303 84.0781 1.6667 0.33 0.33 0.00 0.00 0.33 0.33 0.00 0.33

.

.

.
43072 83.8992 28.0000 1.00 1.00 8.00 8.00 0.33 1.33 8.00 0.33

.

.

.

The most nearly balanced of the designs has a variance sum of 1.6667. All factors are either perfectly balanced
or as close to perfectly balanced as a design with these factors in 26 runs can be. Perfect balance is impossible
for the three-level and four-level factors since three and four do not divide 26, so a standard deviation sum of
zero is not possible. This design has a D-efficiency of 84.0781 compared with 85.3985 (the D-efficiency for
the best design we found previously). This design can be regenerated by running the %MKTDES macro with
procopts=seed=381303 specified.

%mktdes(factors=x1 x2=4 x3 x4=2 x5 x6=3 x7=2 x8=3, n=26, big=5000,
where=(2 <= ((x1 < 4) + (x2 < 4) + (x5 < 3) +

(x6 < 3) + (x8 < 3)) <= 4),
interact=x2*x3 x2*x4 x3*x4 x6*x7,
iter=5, keep=1, procopts=seed=381303)

proc freq; run;

224

Consumer Food Product Example

The FREQ Procedure

Cumulative Cumulative
x1 Frequency Percent Frequency Percent

1 7 26.92 7 26.92
2 7 26.92 14 53.85
3 6 23.08 20 76.92
4 6 23.08 26 100.00

Cumulative Cumulative
x2 Frequency Percent Frequency Percent

1 6 23.08 6 23.08
2 6 23.08 12 46.15
3 7 26.92 19 73.08
4 7 26.92 26 100.00

Cumulative Cumulative
x3 Frequency Percent Frequency Percent

1 13 50.00 13 50.00
2 13 50.00 26 100.00

Cumulative Cumulative
x4 Frequency Percent Frequency Percent

1 13 50.00 13 50.00
2 13 50.00 26 100.00

Cumulative Cumulative
x5 Frequency Percent Frequency Percent

1 9 34.62 9 34.62
2 8 30.77 17 65.38
3 9 34.62 26 100.00

Cumulative Cumulative
x6 Frequency Percent Frequency Percent

1 8 30.77 8 30.77
2 9 34.62 17 65.38
3 9 34.62 26 100.00

Cumulative Cumulative
x7 Frequency Percent Frequency Percent

1 13 50.00 13 50.00
2 13 50.00 26 100.00

Cumulative Cumulative
x8 Frequency Percent Frequency Percent

1 8 30.77 8 30.77
2 9 34.62 17 65.38
3 9 34.62 26 100.00

225

Allocation of Prescription Drugs
The previous examples have all modeled simple choice. However, sometimes the response of interest is not
simple first choice. For example, in prescription drug marketing, researchers often use allocation studies where
multiple, not single choices are made. Physicians are asked questions like “For the next ten prescriptions you
write for a particular condition how many would you write for each of these drugs?” The response, for example,
might be “5 for drug 1, none for drug 2, 3 for drug 3, and 2 for drug 4.”

This example will show how to design, process, code, and analyze an allocation study. The principles of design-
ing an allocation study are the same as for designing a first-choice experiment, as is the coding and final analysis.
However, processing the data before analysis is different.

Designing the Allocation Experiment
In this study, physicians were asked to specify which of ten drugs they would prescribe to their next ten patients.
In this study, ten drugs, Drug 1 � Drug 10, were available each at three different prices, $50, $75, and $100.
In real studies, real brand names would be used and there would probably be more attributes. Since design has
been covered in some detail in other examples, we chose a simple design for this experiment so that we could
concentrate on data processing. First, we use the %MKTRUNS autocall macro to suggest a design size. (All
of the autocall macros used in this report are documented starting on page 261.) We specify ten 3’s for the 10
three-level factors.

title ’Allocation of Prescription Drugs’;

%mktruns(3 3 3 3 3 3 3 3 3 3)

Allocation of Prescription Drugs

Some Reasonable
Design Sizes Cannot Be

(Saturated=21) Violations Divided By

27 0
36 0
45 0
54 0
63 0
72 0
81 0
90 0
99 0

108 0

We need at least 21 choice sets and we see the optimal sizes are all divisible by nine. We will use 27 choice sets.

Next, we use the %MKTDES macro to create the design. In addition, one more factor, Block, is added to the
design. This factor will be used to block the design into three blocks of size 9. PROC FORMAT is used to
assign actual prices of $50, $75, $100 to the levels 1, 2, and 3. A DATA step and PROC SORT are used to assign
formats and sort the design into a random order within blocks.

%let nalts = 10;

%mktdes(factors=Brand1-Brand&nalts=3 Block=3, n=27, procopts=seed=7654321)

proc format;
value price 1 = ’ $50’ 2 = ’ $75’ 3 = ’$100’ . = ’ ’;
run;

226

data sasuser.allocdes;
r = uniform(7);
set design;
format Brand: price.;
run;

proc sort data=sasuser.allocdes out=sasuser.allocdes(drop=r);
by block r;
run;

proc print data=sasuser.allocdes; by block; run;

proc freq;
tables block * (brand:) / list;
run;

For this problem, there exists a perfectly 100% efficient, orthogonal and balanced design. In fact, PROC FACTEX
produces it and the PROC OPTEX step is not actually necessary. Each level of each factor occurs three times in
each block.

Allocation of Prescription Drugs

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 100.0000 100.0000 100.0000 0.9230
2 100.0000 100.0000 100.0000 0.9230
3 100.0000 100.0000 100.0000 0.9230
4 100.0000 100.0000 100.0000 0.9230
5 100.0000 100.0000 100.0000 0.9230

Allocation of Prescription Drugs

----------------------------------- Block=1 ------------------------------------

Obs Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10

1 $50 $75 $50 $100 $100 $100 $75 $75 $75 $50
2 $100 $100 $100 $50 $75 $100 $75 $100 $50 $100
3 $50 $50 $50 $50 $50 $50 $50 $50 $50 $50
4 $75 $75 $75 $50 $100 $75 $100 $75 $50 $75
5 $75 $100 $75 $100 $75 $50 $50 $100 $75 $75
6 $100 $50 $100 $100 $50 $75 $100 $50 $75 $100
7 $100 $75 $100 $75 $100 $50 $50 $75 $100 $100
8 $50 $100 $50 $75 $75 $75 $100 $100 $100 $50
9 $75 $50 $75 $75 $50 $100 $75 $50 $100 $75

227

----------------------------------- Block=2 ------------------------------------

Obs Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10

10 $50 $50 $100 $75 $75 $75 $75 $75 $75 $75
11 $100 $75 $75 $100 $50 $75 $75 $100 $50 $50
12 $75 $100 $50 $50 $100 $75 $75 $50 $100 $100
13 $75 $75 $50 $75 $50 $100 $50 $100 $75 $100
14 $100 $50 $75 $50 $75 $100 $50 $75 $100 $50
15 $100 $100 $75 $75 $100 $50 $100 $50 $75 $50
16 $75 $50 $50 $100 $75 $50 $100 $75 $50 $100
17 $50 $100 $100 $100 $100 $100 $50 $50 $50 $75
18 $50 $75 $100 $50 $50 $50 $100 $100 $100 $75

----------------------------------- Block=3 ------------------------------------

Obs Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10

19 $75 $50 $100 $50 $100 $75 $50 $100 $75 $50
20 $100 $50 $50 $75 $100 $50 $75 $100 $50 $75
21 $75 $100 $100 $75 $50 $100 $100 $75 $50 $50
22 $50 $100 $75 $50 $50 $50 $75 $75 $75 $100
23 $100 $75 $50 $50 $75 $100 $100 $50 $75 $75
24 $100 $100 $50 $100 $50 $75 $50 $75 $100 $75
25 $50 $75 $75 $75 $75 $75 $50 $50 $50 $100
26 $50 $50 $75 $100 $100 $100 $100 $100 $100 $100
27 $75 $75 $100 $100 $75 $50 $75 $50 $100 $50

Allocation of Prescription Drugs

The FREQ Procedure

Cumulative Cumulative
Block Brand1 Frequency Percent Frequency Percent
--

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

Cumulative Cumulative
Block Brand2 Frequency Percent Frequency Percent
--

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

228

Cumulative Cumulative
Block Brand3 Frequency Percent Frequency Percent
--

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

Cumulative Cumulative
Block Brand4 Frequency Percent Frequency Percent
--

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

Cumulative Cumulative
Block Brand5 Frequency Percent Frequency Percent
--

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

Cumulative Cumulative
Block Brand6 Frequency Percent Frequency Percent
--

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

Cumulative Cumulative
Block Brand7 Frequency Percent Frequency Percent
--

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

229

Cumulative Cumulative
Block Brand8 Frequency Percent Frequency Percent
--

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

Cumulative Cumulative
Block Brand9 Frequency Percent Frequency Percent
--

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

Cumulative Cumulative
Block Brand10 Frequency Percent Frequency Percent

1 $50 3 11.11 3 11.11
1 $75 3 11.11 6 22.22
1 $100 3 11.11 9 33.33
2 $50 3 11.11 12 44.44
2 $75 3 11.11 15 55.56
2 $100 3 11.11 18 66.67
3 $50 3 11.11 21 77.78
3 $75 3 11.11 24 88.89
3 $100 3 11.11 27 100.00

Processing the Data
Questionnaires are generated and data collected using a minor modification of the methods discussed in earlier
examples. The difference is instead of asking for first choice data, allocation data are collected instead. Each
row of the input data set contains a block, subject, and set number, followed by the number of times each of the
ten alternatives was chosen. If all of the choice frequencies are zero, then the constant alternative was chosen.
The if statement is used to check data entry. For convenience, choice set number is recoded to run from 1 to 27
instead of consisting of three blocks of nine sets. This gives us one fewer variable on which to stratify.

230

data results;
input Block Subject Set @9 (freq1-freq&nalts) (2.);
if not (sum(of freq:) in (0, &nalts)) then put _all_;
set = (block - 1) * 9 + set;
datalines;

1 1 1 0 0 8 0 2 0 0 0 0 0
1 1 2 0 0 8 0 0 0 2 0 0 0
1 1 3 0 0 0 0 0 0 0 010 0
1 1 4 1 0 0 1 3 3 0 0 2 0
1 1 5 2 0 8 0 0 0 0 0 0 0
1 1 6 0 1 3 1 0 0 0 0 1 4
1 1 7 0 1 3 1 1 2 0 0 2 0
1 1 8 0 0 3 0 0 2 1 0 0 4
1 1 9 0 2 5 0 0 0 0 0 3 0
2 2 1 1 1 0 2 0 3 0 1 1 1
2 2 2 1 0 3 1 0 1 1 0 2 1
.
.
.
;

The first step in creating an analysis data set for an allocation study is to reformat the data from one row per
choice set per block per subject (9�3�100 = 2700 observations) to one per alternative (including the constant)
per choice set per block per subject ((10 + 1) � 9 � 3 � 100 = 29700 observations). For each choice set, 11
observations are written storing the choice frequency in the variable Count and the brand in the variable Brand.
If none of the alternatives are chosen then the constant alternative is chosen ten times, otherwise it is chosen zero
times.

data allocs(keep=block set brand count);
set results;

array freq[&nalts];

* Handle the &nalts alternatives;
do b = 1 to &nalts;

Brand = ’Brand ’ || put(b, 2.);
Count = freq[b];
output;
end;

* Constant alternative choice is implied if nothing else is chosen.
brand = ’ ’ is used to flag the constant alternative.;

brand = ’ ’;
count = 10 * (sum(of freq:) = 0);
output;
run;

proc print data=results(obs=3) label noobs; run;
proc print data=allocs(obs=33); run;

The PROC PRINT steps show how the first three observations of the RESULTS data set are transposed into the
first 33 observations of the ALLOCS data set.

Allocation of Prescription Drugs

Block Subject Set Freq1 Freq2 Freq3 Freq4 Freq5 Freq6 Freq7 Freq8 Freq9 Freq10

1 1 1 0 0 8 0 2 0 0 0 0 0
1 1 2 0 0 8 0 0 0 2 0 0 0
1 1 3 0 0 0 0 0 0 0 0 10 0

231

Allocation of Prescription Drugs

Obs Block Set Brand Count

1 1 1 Brand 1 0
2 1 1 Brand 2 0
3 1 1 Brand 3 8
4 1 1 Brand 4 0
5 1 1 Brand 5 2
6 1 1 Brand 6 0
7 1 1 Brand 7 0
8 1 1 Brand 8 0
9 1 1 Brand 9 0

10 1 1 Brand 10 0
11 1 1 0

12 1 2 Brand 1 0
13 1 2 Brand 2 0
14 1 2 Brand 3 8
15 1 2 Brand 4 0
16 1 2 Brand 5 0
17 1 2 Brand 6 0
18 1 2 Brand 7 2
19 1 2 Brand 8 0
20 1 2 Brand 9 0
21 1 2 Brand 10 0
22 1 2 0

23 1 3 Brand 1 0
24 1 3 Brand 2 0
25 1 3 Brand 3 0
26 1 3 Brand 4 0
27 1 3 Brand 5 0
28 1 3 Brand 6 0
29 1 3 Brand 7 0
30 1 3 Brand 8 0
31 1 3 Brand 9 10
32 1 3 Brand 10 0
33 1 3 0

The next step aggregates the data. It stores in the variable Count the number of times each alternative of each
choice set was chosen. This creates a data set with 297 observations (3 blocks� 9 sets � 11 alternatives = 297).

* Aggregate, store the results back in count.;

proc summary data=allocs nway missing;
class set brand;
output sum(count)=Count out=allocs(drop=_type_ _freq_);
run;

The next step rolls out the experimental design data set to match the choice allocations data set. The data set
is transposed from one row per choice set to one row per alternative per choice set. This data set also has 297
observations. As we saw in many previous examples, the %MKTROLL macro can be used to process the design.

232

data key(keep=Brand Price);
input Brand $ 1-8 Price $;
datalines;

Brand 1 Brand1
Brand 2 Brand2
Brand 3 Brand3
Brand 4 Brand4
Brand 5 Brand5
Brand 6 Brand6
Brand 7 Brand7
Brand 8 Brand8
Brand 9 Brand9
Brand 10 Brand10
. .
;

%mktroll(design=sasuser.allocdes, key=key, alt=brand, out=rolled)

proc print data=rolled(obs=11); format price price.; run;

Allocation of Prescription Drugs

Obs Set Brand Price

1 1 Brand 1 $50
2 1 Brand 2 $75
3 1 Brand 3 $50
4 1 Brand 4 $100
5 1 Brand 5 $100
6 1 Brand 6 $100
7 1 Brand 7 $75
8 1 Brand 8 $75
9 1 Brand 9 $75
10 1 Brand 10 $50
11 1

Both data sets must be sorted the same way before they can be merged. The constant alternative, indicated by a
missing brand, is last in the design choice set and hence is out of order. Missing must come before nonmissing
for the merge. The order is correct in the ALLOCS data set since it was created by PROC SUMMARY with
Brand as a class variable.

proc sort data=rolled; by set brand; run;

The data are merged along with error checking to ensure that the merge proceeded properly. Both data sets should
have the same observations and set and brand variables, so the merge should be one to one.

data allocs2;
merge allocs(in=flag1) rolled(in=flag2);
by set brand;
if flag1 ne flag2 then put ’ERROR: Merge is not 1 to 1.’;
format price price.;
run;

proc print data=allocs2(obs=22);
var brand price count;
sum count;
by notsorted set;
run;

In the aggregate and combined data set, we see how often each alternative was chosen for each choice set. For

233

example, in the first choice set, the constant alternative was chosen zero times, Brand 1 at $50 was chosen 103
times, and so on. The 11 alternatives were chosen a total of 1000 times, 100 subjects times 10 choices each.

Allocation of Prescription Drugs

------------------------------------ Set=1 -------------------------------------

Obs Brand Price Count

1 0
2 Brand 1 $50 103
3 Brand 2 $75 58
4 Brand 3 $50 318
5 Brand 4 $100 99
6 Brand 5 $100 54
7 Brand 6 $100 83
8 Brand 7 $75 71
9 Brand 8 $75 58

10 Brand 9 $75 100
11 Brand 10 $50 56

--- -----
Set 1000

------------------------------------ Set=2 -------------------------------------

Obs Brand Price Count

12 10
13 Brand 1 $100 73
14 Brand 2 $100 76
15 Brand 3 $100 342
16 Brand 4 $50 55
17 Brand 5 $75 50
18 Brand 6 $100 77
19 Brand 7 $75 95
20 Brand 8 $100 71
21 Brand 9 $50 72
22 Brand 10 $100 79

--- -----
Set 1000

At this point, the data set contains 297 observations (27 choice sets times 11 alternatives) showing the number
of times each alternative was chosen. This data set must be augmented to also include the number of times each
alternative was not chosen. For example, in the first choice set, brand 1 was chosen 103 times, which means it
was not chosen 0+58+318+99+54+83+71+58+100+56 = 897 times. We use a macro, %MKTALLO
for “marketing allocation study” to process the data. We specify the input data=allocs2 data set, the output
out=allocs3 data set, the number of alternatives including the constant (nalts=%eval(&nalts + 1)),
the variables in the data set except the frequency variable (vars=set brand price), and the frequency
variable (freq=Count). The macro counts how many times each alternative was chosen and not chosen and
writes the results to the out= data set along with the usual c = 1 for chosen and c = 2 for unchosen.

%mktallo(data=allocs2, out=allocs3, nalts=%eval(&nalts + 1),
vars=set brand price, freq=Count)

proc print data=allocs3(obs=22);
var set brand price count c;
run;

234

The first 22 records of the allocation data set are shown next.

Allocation of Prescription Drugs

Obs Set Brand Price Count c

1 1 0 1
2 1 1000 2
3 1 Brand 1 $50 103 1
4 1 Brand 1 $50 897 2
5 1 Brand 2 $75 58 1
6 1 Brand 2 $75 942 2
7 1 Brand 3 $50 318 1

8 1 Brand 3 $50 682 2
9 1 Brand 4 $100 99 1

10 1 Brand 4 $100 901 2
11 1 Brand 5 $100 54 1
12 1 Brand 5 $100 946 2
13 1 Brand 6 $100 83 1
14 1 Brand 6 $100 917 2
15 1 Brand 7 $75 71 1

16 1 Brand 7 $75 929 2
17 1 Brand 8 $75 58 1
18 1 Brand 8 $75 942 2
19 1 Brand 9 $75 100 1
20 1 Brand 9 $75 900 2
21 1 Brand 10 $50 56 1
22 1 Brand 10 $50 944 2

In the first choice set, the constant alternative is chosen zero times and not chosen 1000 times, Brand 1 is chosen
103 times and not chosen 1000� 103 = 897 times, Brand 2 is chosen 58 times and not chosen 1000� 58 = 942

times, and so on. Note that allocation studies do not always have fixed sums, so it is important to use the
%MKTALLO macro or some other approach that actually counts the number of times each alternative was
unchosen. It is not always sufficient to simply subtract from a fixed constant.

Coding and Analysis
The next step codes the design for analysis. Dummy variables are created for Brand and Price. All of the
PROC TRANSREG options have been discussed in other examples.

proc transreg design data=allocs3 nozeroconstant norestoremissing;
model class(brand price / zero=none) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
id set c count;
run;

Analysis proceeds like it has in all other examples. We stratify by choice set number. We do not need to stratify
by Block since choice set number does not repeat within block.

proc phreg data=coded;
where count > 0;
model c*c(2) = &_trgind / ties=breslow;
freq count;
strata set;
run;

We used the where statement to exclude observations with zero frequency; otherwise PROC PHREG complains
about them.

235

Multinomial Logit Model Results
Here are the results. Recall that we used %phchoice(on) on page 71 to customize the output from PROC
PHREG.

Allocation of Prescription Drugs

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Count
Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 11000 1000 10000
2 2 11000 1000 10000
3 3 11000 1000 10000
4 4 11000 1000 10000
5 5 11000 1000 10000
6 6 11000 1000 10000
7 7 11000 1000 10000
8 8 11000 1000 10000
9 9 11000 1000 10000

10 10 11000 1000 10000
11 11 11000 1000 10000
12 12 11000 1000 10000
13 13 11000 1000 10000
14 14 11000 1000 10000
15 15 11000 1000 10000
16 16 11000 1000 10000
17 17 11000 1000 10000
18 18 11000 1000 10000
19 19 11000 1000 10000
20 20 11000 1000 10000
21 21 11000 1000 10000
22 22 11000 1000 10000
23 23 11000 1000 10000
24 24 11000 1000 10000
25 25 11000 1000 10000
26 26 11000 1000 10000
27 27 11000 1000 10000

Total 297000 27000 270000

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

236

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 502505.13 489044.70
AIC 502505.13 489068.70
SBC 502505.13 489167.14

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 13460.4283 12 <.0001
Score 18359.1337 12 <.0001
Wald 14099.9841 12 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 2.09228 0.06766 956.1751 <.0001
Brand 2 1 2.08440 0.06769 948.1852 <.0001
Brand 3 1 3.53545 0.06484 2973.0894 <.0001
Brand 4 1 2.09032 0.06767 954.1811 <.0001
Brand 5 1 2.07845 0.06771 942.1769 <.0001
Brand 6 1 2.02852 0.06790 892.5031 <.0001
Brand 7 1 2.06241 0.06777 926.0726 <.0001
Brand 8 1 2.07895 0.06771 942.6783 <.0001
Brand 9 1 2.11027 0.06760 974.5421 <.0001
Brand 10 1 2.05684 0.06779 920.5101 <.0001

$50 1 0.04627 0.01617 8.1842 0.0042
$75 1 -0.02108 0.01640 1.6525 0.1986

$100 0 0 . . .

The output shows that there are 27 strata, one per choice set, each consisting of 1000 chosen alternatives (10
choices by 100 subjects) and 10,000 unchosen alternatives. All of the brand coefficients are “significant” �, with
the Brand 3 effect being by far the strongest. There is a very small effect for Price = $50.

�We will soon see that this fact should be ignored.

237

Analyzing Proportions
Recall that we collected data by asking physicians to report which brands they would prescribe the next ten times
they write prescriptions. Alternatively, we could ask them to report the proportion of time they would prescribe
each brand. We can simulate having proportion data by dividing our count data by 10. Then our frequencies will
not be integers. We specify the notruncate option on PROC PHREG to allow noninteger frequencies.

data coded2;
set coded;
count = count / 10;
run;

proc phreg data=coded2;
where count > 0;
model c*c(2) = &_trgind / ties=breslow;
freq count / notruncate;
strata set;
run;

When we do this, we see the number of alternatives and the number chosen and not chosen decrease by a factor of
10 as do all of the Chi-Square tests. The coefficients are unchanged. This implies that market share calculations
are invariant to the different scalings of the frequencies. However, the p-values are not invariant. The sample size
is artificially inflated by the data manipulations so p-values are not interpretable in an allocation study.

Allocation of Prescription Drugs

The PHREG Procedure

Model Information

Data Set WORK.CODED2
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Count
Ties Handling BRESLOW

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 1100.0 100.0 1000.0
2 2 1100.0 100.0 1000.0
3 3 1100.0 100.0 1000.0
4 4 1100.0 100.0 1000.0
5 5 1100.0 100.0 1000.0
6 6 1100.0 100.0 1000.0
7 7 1100.0 100.0 1000.0
8 8 1100.0 100.0 1000.0
9 9 1100.0 100.0 1000.0

10 10 1100.0 100.0 1000.0
11 11 1100.0 100.0 1000.0
12 12 1100.0 100.0 1000.0
13 13 1100.0 100.0 1000.0
14 14 1100.0 100.0 1000.0
15 15 1100.0 100.0 1000.0
16 16 1100.0 100.0 1000.0
17 17 1100.0 100.0 1000.0
18 18 1100.0 100.0 1000.0

238

19 19 1100.0 100.0 1000.0
20 20 1100.0 100.0 1000.0
21 21 1100.0 100.0 1000.0
22 22 1100.0 100.0 1000.0
23 23 1100.0 100.0 1000.0
24 24 1100.0 100.0 1000.0
25 25 1100.0 100.0 1000.0
26 26 1100.0 100.0 1000.0
27 27 1100.0 100.0 1000.0

Total 29700.0 2700.0 27000.0

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Allocation of Prescription Drugs

Without With
Criterion Covariates Covariates

-2 LOG L 37816.553 36470.511
AIC 37816.553 36494.511
SBC 37816.553 36565.323

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 1346.0428 12 <.0001
Score 1835.9134 12 <.0001
Wald 1409.9984 12 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 2.09228 0.21397 95.6175 <.0001
Brand 2 1 2.08440 0.21406 94.8185 <.0001
Brand 3 1 3.53545 0.20504 297.3089 <.0001
Brand 4 1 2.09032 0.21399 95.4181 <.0001
Brand 5 1 2.07845 0.21413 94.2177 <.0001
Brand 6 1 2.02852 0.21472 89.2503 <.0001
Brand 7 1 2.06241 0.21432 92.6073 <.0001
Brand 8 1 2.07895 0.21412 94.2678 <.0001
Brand 9 1 2.11027 0.21377 97.4542 <.0001
Brand 10 1 2.05684 0.21438 92.0510 <.0001

$50 1 0.04627 0.05114 0.8184 0.3656
$75 1 -0.02108 0.05187 0.1652 0.6844

$100 0 0 . . .

239

Chair Design with Generic Attributes
This study illustrates creating an experimental design for a purely generic choice model. In a purely generic
study there are no brands, just bundles of attributes. Say a particular manufacturer is interested in designing one
or more new chairs. They can vary the attributes of the chairs, present subjects with descriptions of competing
chair designs, and model the effects of the attributes on choice.

Factor Attribute Levels
X1 Color 3 Colors
X2 Back 3 Styles
X3 Seat 3 Styles
X4 Arm Rest 3 Styles
X5 Material 3 Materials

Assume subjects will be shown descriptions of three chairs at a time. If we were to model our design after the
approach used in previous examples, we would use the %MKTDES autocall macro to create a design with 15
factors, five for the first chair, five for the second chair, and five for the third chair. This design would have to
have at least 15� (3� 1) + 1 = 31 runs. Here is how we might have made the design.

title ’Generic Chair Attributes’;

* This design will not be used;
%mktdes(factors=x1-x15=3, n=33)

The %MKTDES approach to designing an experiment like this allows you to fit very general models including
models with alternative-specific effects and even mother logit models. However, at analysis time for this purely
generic model, we will fit a model with 10 parameters, two for each of the five factors, class(x1-x5).
Creating a design with over 30 choice sets is overkill for a problem like this. Since we do not need a complicated
model for this example, we will instead use a different approach. Recall the discussion of linear design efficiency,
choice model design efficiency, and using linear design efficiency as a surrogate for choice design efficiency from
the “Preliminaries” section starting on page 68. Instead of using linear design efficiency as a surrogate for choice
design efficiency, we can directly optimize choice design efficiency given an assumed model and � parameter
vector.

Purely Generic Attributes, Alternative Swapping
This part of the example will illustrate creating an efficient choice design using an algorithm that swaps individual
alternatives (as opposed to entire choice sets) in and out of the design. First, we will use the %MKTDES macro
to create a candidate set. It will consist of 5 three-level factors, one for each of the five generic attributes. It
will also consist of three flag variables, f1-f3, one for each alternative. Since there are three alternatives, the
candidate set must contain those observations that may be used for alternative 1, those observations that may
be used for alternative 2, and those observations that may be used for alternative 3. The observations for the
different alternatives may be all different, all the same, or any pattern in between depending on the problem. For
example, the candidate set may contain one observation that is only used for the last, constant alternative. The
flag variable for each alternative consists of ones for those candidates that may be included for that alternative
and zeros or missings for those candidates that may not be included for that alternative. In this purely generic
case, each flag variable consists entirely of ones indicating that any candidate can appear in any alternative. The
following code creates the candidates.

%mktdes(factors=x1-x5=3 f1-f3=1, run=factex)

proc print; run;

We specified the run=factex option in the %MKTDES macro. We do not need to run PROC OPTEX since
we are just creating a candidate set. The columns x1-x5 are the generic attributes, and f1-f3 are the flags.
The canidate set has 27 observations, although we certainly could create larger candidate sets for this problem
by specifying the size= option.

240

Generic Chair Attributes

Obs x1 x2 x3 x4 x5 f1 f2 f3

1 1 1 1 1 1 1 1 1
2 1 1 2 3 3 1 1 1
3 1 1 3 2 2 1 1 1
4 1 2 1 3 3 1 1 1
5 1 2 2 2 2 1 1 1
6 1 2 3 1 1 1 1 1
7 1 3 1 2 2 1 1 1
8 1 3 2 1 1 1 1 1
9 1 3 3 3 3 1 1 1

10 2 1 1 3 2 1 1 1
11 2 1 2 2 1 1 1 1
12 2 1 3 1 3 1 1 1
13 2 2 1 2 1 1 1 1
14 2 2 2 1 3 1 1 1
15 2 2 3 3 2 1 1 1
16 2 3 1 1 3 1 1 1
17 2 3 2 3 2 1 1 1
18 2 3 3 2 1 1 1 1
19 3 1 1 2 3 1 1 1
20 3 1 2 1 2 1 1 1
21 3 1 3 3 1 1 1 1
22 3 2 1 1 2 1 1 1
23 3 2 2 3 1 1 1 1
24 3 2 3 2 3 1 1 1
25 3 3 1 3 1 1 1 1
26 3 3 2 2 3 1 1 1
27 3 3 3 1 2 1 1 1

Next, we will search that candidate set for an efficient design for the model specification class(x1-x5) and
the assumption � = 0. We will use the %CHOICEFF autocall macro to do this. (All of the autocall macros used
in this report are documented starting on page 261.) This approach is based on the work of Huber and Zwerina
(1996) who proposed constructing efficient experimental designs for choice experiments under an assumed model
and �. The %CHOICEFF macro uses a modified Federov algorithm (Federov (1972) and Cook and Nachtsheim
(1980)) to optimize the choice model variance matrix. This specification requests a generic design with 9 choice
sets each consisting of three alternatives.

%choiceff(data=cand1, model=class(x1-x5), nsets=9,
seed=9999, flags=f1-f3, beta=zero);

The data=cand1 option names the input data set of candidates. The model=class(x1-x5) option spec-
ifies the most general model that might be considered at analysis time. The nsets=9 specifies the number of
choice sets. Note that this is considerably smaller than the minimum of 31 that would be required if we were
just using the %MKTDES linear-design approach. The seed=9999 option specifies the random number seed.
The flags=f1-f3 specifies the flag variables for alternatives 1 to 3. Implicitly, this option also specifies the
fact that there are three alternatives since three flag variables were specified. The beta=zero option specifies
the assumption � = 0. A vector of numbers like beta=-1 0 -1 0 -1 0 -1 0 -1 0 -1 0 could be
specified. When you wish to assume all parameters are zero, you can specify beta=zero instead of typing a
vector of the zeros. You can also omit the beta= option if you just want the macro to list the parameters. You
can use this list to ensure that you specify the parameters in the right order.

The first part of the output from the macro is a list of all of the effects generated and the assumed values of �. It
is very important to check this and make sure it is correct. In particular, when you are explicitly specifying the �
vector, you need to make sure you specified all of the values in the right order.

241

Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2

Next, the macro produces the iteration history. Note that this is not output from PROC OPTEX. The macro uses
PROC IML and a modified Federov algorithm to iteratively improve the efficiency of the choice design given
the specified candidates, model, and �. Also note that these efficiencies are not on a 0 to 100 scale. In fact for
this design, 1.7320508076 is the optimum. Iterations can be slow, so by default only two sets of iterations are
performed. You can increase this by specifying the maxiter= option.

Design Iteration D-Efficiency D-Error
--

1 0 0.79212136 1.2624328172
1 1.632279118 0.6126403193
2 1.7320508076 0.5773502692
3 1.7320508076 0.5773502692

Design Iteration D-Efficiency D-Error
--

2 0 0.8952159032 1.1170489671
1 1.5464072418 0.6466601895
2 1.679907245 0.5952709609
3 1.679907245 0.5952709609

Next, the macro shows which design it chose and the final efficiency and D-Error (D-Efficiency = 1 / D-Error).

Final Results: Design = 1
Efficiency = 1.7320508076
D-Error = 0.5773502692

Next, it shows the variance, standard error, and df for each effect. It is important to ensure that each effect is
estimable: (df = 1).

242

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.66667 1 0.81650
2 x12 x1 2 0.66667 1 0.81650
3 x21 x2 1 0.66667 1 0.81650
4 x22 x2 2 0.66667 1 0.81650
5 x31 x3 1 0.66667 1 0.81650
6 x32 x3 2 0.66667 1 0.81650
7 x41 x4 1 0.66667 1 0.81650
8 x42 x4 2 0.66667 1 0.81650
9 x51 x5 1 0.66667 1 0.81650
10 x52 x5 2 0.66667 1 0.81650

==
10

The data set BEST contains the final, best design found.

proc print; run;

The data set contains in the variable Design the number of the design with the maximum efficiency, in Ef-
ficiency the efficiency of this design, in Index the candidate set observation number, in Set the choice set
number, in Prob the probability that this alternative will be chosen given �, in n the observation number, in
x1-x5 the design, and in f1-f3 the flags.

Generic Chair Attributes

Obs Design Efficiency Index Set Prob n x1 x2 x3 x4 x5 f1 f2 f3

1 1 1.73205 6 1 0.33333 1 1 2 3 1 1 1 1 1
2 1 1.73205 10 1 0.33333 2 2 1 1 3 2 1 1 1
3 1 1.73205 26 1 0.33333 3 3 3 2 2 3 1 1 1

4 1 1.73205 9 2 0.33333 4 1 3 3 3 3 1 1 1
5 1 1.73205 22 2 0.33333 5 3 2 1 1 2 1 1 1
6 1 1.73205 11 2 0.33333 6 2 1 2 2 1 1 1 1

7 1 1.73205 16 3 0.33333 7 2 3 1 1 3 1 1 1
8 1 1.73205 23 3 0.33333 8 3 2 2 3 1 1 1 1
9 1 1.73205 3 3 0.33333 9 1 1 3 2 2 1 1 1

10 1 1.73205 2 4 0.33333 10 1 1 2 3 3 1 1 1
11 1 1.73205 13 4 0.33333 11 2 2 1 2 1 1 1 1
12 1 1.73205 27 4 0.33333 12 3 3 3 1 2 1 1 1

13 1 1.73205 21 5 0.33333 13 3 1 3 3 1 1 1 1
14 1 1.73205 14 5 0.33333 14 2 2 2 1 3 1 1 1
15 1 1.73205 7 5 0.33333 15 1 3 1 2 2 1 1 1

16 1 1.73205 19 6 0.33333 16 3 1 1 2 3 1 1 1
17 1 1.73205 8 6 0.33333 17 1 3 2 1 1 1 1 1
18 1 1.73205 15 6 0.33333 18 2 2 3 3 2 1 1 1

19 1 1.73205 4 7 0.33333 19 1 2 1 3 3 1 1 1
20 1 1.73205 18 7 0.33333 20 2 3 3 2 1 1 1 1
21 1 1.73205 20 7 0.33333 21 3 1 2 1 2 1 1 1

22 1 1.73205 12 8 0.33333 22 2 1 3 1 3 1 1 1
23 1 1.73205 5 8 0.33333 23 1 2 2 2 2 1 1 1
24 1 1.73205 25 8 0.33333 24 3 3 1 3 1 1 1 1

243

25 1 1.73205 1 9 0.33333 25 1 1 1 1 1 1 1 1
26 1 1.73205 24 9 0.33333 26 3 2 3 2 3 1 1 1
27 1 1.73205 17 9 0.33333 27 2 3 2 3 2 1 1 1

This design has 27 runs (9 choice sets � 3 alternatives). This happens to be the same number as the number of
candidate alternatives from the fractional-factorial design, although in general these numbers do not have to be
the same. Notice the Index variable. It contains the candidate set observation number, that is the number of the
observation in the candidate set that matches this alterative. Notice that in this problem, each number appears
once, so each candidate was selected for inclusion in the design exactly once. For this problem (a generic design
with 5 three-level factors, 9 choice sets, three alternatives, and � = 0) the optimal design can be constructed by
optimally sorting the 27 alternatives in a fractional-factorial design. Also notice that in this design, each level
occurs exactly once in each factor and each choice set.

Generic Attributes, a Constant Alternative, and Alternative Swapping
Now let’s make a design for the same problem but this time with a constant alternative. We will first use the
%MKTDES macro just like before to make a design for the nonconstant alternatives and store the results in a
candidate set CAND1. Then we will use the %MKTDES macro again to create the constant alternative. Next,
we use a DATA step to combine the two candidate sets.

%mktdes(factors=x1-x5=3 f1-f3=1, run=factex)

%mktdes(factors=x1-x5=1 f4=1, run=plan, cand=cand2)

data cand3; set cand1 cand2; run;

proc print; run;

Here is the candidate set.

Generic Chair Attributes

Obs x1 x2 x3 x4 x5 f1 f2 f3 f4

1 1 1 1 1 1 1 1 1 .
2 1 1 2 3 3 1 1 1 .
3 1 1 3 2 2 1 1 1 .
4 1 2 1 3 3 1 1 1 .
5 1 2 2 2 2 1 1 1 .
6 1 2 3 1 1 1 1 1 .
7 1 3 1 2 2 1 1 1 .
8 1 3 2 1 1 1 1 1 .
9 1 3 3 3 3 1 1 1 .

10 2 1 1 3 2 1 1 1 .
11 2 1 2 2 1 1 1 1 .
12 2 1 3 1 3 1 1 1 .
13 2 2 1 2 1 1 1 1 .
14 2 2 2 1 3 1 1 1 .
15 2 2 3 3 2 1 1 1 .
16 2 3 1 1 3 1 1 1 .
17 2 3 2 3 2 1 1 1 .
18 2 3 3 2 1 1 1 1 .

244

19 3 1 1 2 3 1 1 1 .
20 3 1 2 1 2 1 1 1 .
21 3 1 3 3 1 1 1 1 .
22 3 2 1 1 2 1 1 1 .
23 3 2 2 3 1 1 1 1 .
24 3 2 3 2 3 1 1 1 .
25 3 3 1 3 1 1 1 1 .
26 3 3 2 2 3 1 1 1 .
27 3 3 3 1 2 1 1 1 .
28 1 1 1 1 1 . . . 1

The first 27 observations may be used for any of the first three alternatives and the 28th observation may only be
used for fourth or constant alternative. In this example, the constant alternative is composed solely from the first
level of each factor. Of course this could be changed depending on the situation.

The %CHOICEFF macro invocation is the same as before, except now we have four flags, and now we ask for
more iterations.

%choiceff(data=cand3, model=class(x1-x5), nsets=9, maxiter=10,
seed=9999, flags=f1-f4, beta=zero);

proc print; run;

You can see in the final design that there are now four alternatives and the last alternative in each choice set is
constant and is always flagged by f4=1. In the interest of space, most of the iteration histories are omitted.

Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1

10 x52 0 x5 2

245

Design Iteration D-Efficiency D-Error
--

1 0 0.8599706425 1.1628303928
1 1.3044476431 0.766608001
2 1.4152340172 0.7065969217
3 1.4243278149 0.7020855659
4 1.4282701243 0.7001476702

.

.

.

Design Iteration D-Efficiency D-Error
--

8 0 0.7424273661 1.3469331085
1 1.3594472951 0.7355930631
2 1.436915059 0.6959353608
3 1.4962970242 0.6683165066
4 1.4962970242 0.6683165066

.

.

.

Generic Chair Attributes

Final Results: Design = 8
Efficiency = 1.4962970242
D-Error = 0.6683165066

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.76376 1 0.87394
2 x12 x1 2 0.85986 1 0.92729
3 x21 x2 1 0.77177 1 0.87851
4 x22 x2 2 0.88889 1 0.94281
5 x31 x3 1 0.76376 1 0.87394
6 x32 x3 2 0.85986 1 0.92729
7 x41 x4 1 0.76376 1 0.87394
8 x42 x4 2 0.85986 1 0.92729
9 x51 x5 1 0.77177 1 0.87851

10 x52 x5 2 0.88889 1 0.94281
==
10

Generic Chair Attributes

Obs Design Efficiency Index Set Prob n x1 x2 x3 x4 x5 f1 f2 f3 f4

1 8 1.49630 26 1 0.25 253 3 3 2 2 3 1 1 1 .
2 8 1.49630 21 1 0.25 254 3 1 3 3 1 1 1 1 .
3 8 1.49630 15 1 0.25 255 2 2 3 3 2 1 1 1 .
4 8 1.49630 28 1 0.25 256 1 1 1 1 1 . . . 1

5 8 1.49630 7 2 0.25 257 1 3 1 2 2 1 1 1 .
6 8 1.49630 14 2 0.25 258 2 2 2 1 3 1 1 1 .
7 8 1.49630 21 2 0.25 259 3 1 3 3 1 1 1 1 .
8 8 1.49630 28 2 0.25 260 1 1 1 1 1 . . . 1

246

9 8 1.49630 27 3 0.25 261 3 3 3 1 2 1 1 1 .
10 8 1.49630 2 3 0.25 262 1 1 2 3 3 1 1 1 .
11 8 1.49630 13 3 0.25 263 2 2 1 2 1 1 1 1 .
12 8 1.49630 28 3 0.25 264 1 1 1 1 1 . . . 1

13 8 1.49630 6 4 0.25 265 1 2 3 1 1 1 1 1 .
14 8 1.49630 17 4 0.25 266 2 3 2 3 2 1 1 1 .
15 8 1.49630 19 4 0.25 267 3 1 1 2 3 1 1 1 .
16 8 1.49630 28 4 0.25 268 1 1 1 1 1 . . . 1

17 8 1.49630 11 5 0.25 269 2 1 2 2 1 1 1 1 .
18 8 1.49630 9 5 0.25 270 1 3 3 3 3 1 1 1 .
19 8 1.49630 22 5 0.25 271 3 2 1 1 2 1 1 1 .
20 8 1.49630 28 5 0.25 272 1 1 1 1 1 . . . 1

21 8 1.49630 5 6 0.25 273 1 2 2 2 2 1 1 1 .
22 8 1.49630 12 6 0.25 274 2 1 3 1 3 1 1 1 .
23 8 1.49630 25 6 0.25 275 3 3 1 3 1 1 1 1 .
24 8 1.49630 28 6 0.25 276 1 1 1 1 1 . . . 1

25 8 1.49630 23 7 0.25 277 3 2 2 3 1 1 1 1 .
26 8 1.49630 16 7 0.25 278 2 3 1 1 3 1 1 1 .
27 8 1.49630 3 7 0.25 279 1 1 3 2 2 1 1 1 .
28 8 1.49630 28 7 0.25 280 1 1 1 1 1 . . . 1

29 8 1.49630 4 8 0.25 281 1 2 1 3 3 1 1 1 .
30 8 1.49630 18 8 0.25 282 2 3 3 2 1 1 1 1 .
31 8 1.49630 20 8 0.25 283 3 1 2 1 2 1 1 1 .
32 8 1.49630 28 8 0.25 284 1 1 1 1 1 . . . 1

33 8 1.49630 24 9 0.25 285 3 2 3 2 3 1 1 1 .
34 8 1.49630 8 9 0.25 286 1 3 2 1 1 1 1 1 .
35 8 1.49630 10 9 0.25 287 2 1 1 3 2 1 1 1 .
36 8 1.49630 28 9 0.25 288 1 1 1 1 1 . . . 1

When there were three alternatives, each alternative had a probability of choice of 1/3, and now with four al-
ternatives, the probability is 1/4. They are all equal because of the assumption � = 0. With other assumptions
about �, typically the probabilities will not all be equal. Note that missing flags are treated the same as zero.
Also notice that some candidate alternatives appear in the design more than once and some do not appear at all.

Generic Attributes, a Constant Alternative, and Choice Set Swapping
The %CHOICEFF macro can be used in a very different way. Instead of providing a candidate set of alternatives
to swap in and out of the design, you can provide a candidate set of entire choice sets. For this particular example,
swapping alternatives will almost certainly be better. However, sometimes, if you need to impose restrictions on
which alternative can appear with which other alternative, then you must use the set swapping options. We will
start by using the %MKTDES macro to make a candidate design, with one run per choice set and one factor
for each attribute of each alternative (just like we did in the vacation, fabric softener, and food examples). Then
we will process the candidates from one row per choice set to one row per alternative per choice set using the
%MKTROLL macro. We will then run the %CHOICEFF macro, only this time we will specify nalts=4
instead of flags=f1-f4. Since there are no alternative flag variables to count, we have to tell the macro how
many alternatives are in each choice set.

247

%mktdes(factors=x1-x15=3, run=factex, size=81 * 81)

data key;
input (x1-x5) ($);
datalines;

x1 x2 x3 x4 x5
x6 x7 x8 x9 x10

x11 x12 x13 x14 x15
.

;

%mktroll(design=cand1, key=key, out=rolled)

* Code the constant alternative;
data cand2;

set rolled;
if _alt_ = 4 then do; x1 = 1; x2 = 1; x3 = 1; x4 = 1; end;
run;

%choiceff(data=cand2, model=class(x1-x5), nsets=9, nalts=4,
beta=zero, seed=109);

Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2

Generic Chair Attributes

Design Iteration D-Efficiency D-Error
--

1 0 0.8366132274 1.1952954689
1 1.3243418568 0.7550920443
2 1.3507622396 0.7403227383
3 1.3683353572 0.730814997
4 1.3683353572 0.730814997

Design Iteration D-Efficiency D-Error
--

2 0 0.905865211 1.1039169932
1 1.3344815671 0.7493546743
2 1.3793159247 0.7249970671
3 1.3793159247 0.7249970671

Generic Chair Attributes

Final Results: Design = 2
Efficiency = 1.3793159247
D-Error = 0.7249970671

248

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.80431 1 0.89683
2 x12 x1 2 1.06350 1 1.03126
3 x21 x2 1 0.73761 1 0.85884
4 x22 x2 2 0.96773 1 0.98373
5 x31 x3 1 0.85405 1 0.92415
6 x32 x3 2 0.93511 1 0.96701
7 x41 x4 1 0.97698 1 0.98842
8 x42 x4 2 0.95917 1 0.97937
9 x51 x5 1 0.85520 1 0.92477
10 x52 x5 2 0.99226 1 0.99612

==
10

Data collection, processing, and analysis is basically the same as before, so we will not go through another
example of it. The only difference is that our design data set is already arrayed with one row per alternative, so
we will not have to put it in that form during the processing step. However, note that the model statement in
PROC TRANSREG should match or be no more complicated than the model specification that generated the
design:

model class(x1-x5);

A model with fewer degrees of freedom is safe, although the design will be suboptimal. For example, if x1-x5
are numeric, this would be safe:

model identity(x1-x5);

However, using this design in a branded study and specifying alternative-specific effects like this could lead to a
lot of unestimable parameters.

* Bad idea for this design!!;
model class(brand)

class(brand * x1 brand * x2 brand * x3 brand * x4 brand * x5);

Design Algorithm Comparisons
It is instructive to compare the three approaches outlined in this report in the context of this problem. There
are 33�5 = 14; 348; 907 choice sets for this problem (three-level factors and 3 alternatives times 5 factors per
alternative). If we were to use the pure linear design approach using the %MKTDES macro and FACTEX/PLAN
and OPTEX, we could never begin to consider all possible candidate choice sets. Similarly, with the choice set
swapping algorithm of the %CHOICEFF macro, we could never begin to consider all possible candidate choice
sets. Furthermore, with the linear design approach, we could not create a design with nine choice sets since the
minimum size is 2� 15+ 1 = 31. Now consider the alternative swapping algorithm. It uses at most a candidate
set with only 244 observations (35+1). From it, every possible choice set can potentially be constructed although
the macro will only consider a tiny fraction of the possibilities. So the alternative swapping algorithm generally
has more freedom to find a good design.

Both uses of the %CHOICEFF macro have the advantage that they are explicitly minimizing the variances of
the parameter estimates given a model and a � vector. They can be used to produce smaller, more specialized,
and better designs. However, if the � vector or model is badly misspecified, the designs could be horrible. How
badly do things have to be misspecified before you will have problems? Who knows. More research is needed.
In contrast, the linear model %MKTDES approach is very conservative and safe in that it should let you specify
a very general model and still produce estimable parameters. The cost is you may be using many more choice
sets than you need, particularly for nonbranded generic attributes. If you really have some information about

249

your parameters, you should use them to produce a smaller and better design. However, if you have little or no
information about parameters and if you anticipate specifying very general models like mother logit, then you
probably want to use the linear design approach.

250

Other Design Strategies
This section illustrates some design strategies that are not in other sections. Included are examples for factors with
many levels, when quantitative factors have extra levels, designs with many factors, improving an existing design,
adding random choice sets to the candidate set, creating candidate sets by permuting columns, and efficiently
augmenting fixed choice sets. We will not actually use any designs from this section.

Very Big Designs
A researcher needs to design a choice experiment with 16 alternatives. Each alternative is composed of 1 eight-
level factor, 3 four-level factors, and 15 two-level factors. So the full design is 2 240448816 (240 two-level factors,
48 four-level factors, and 16 eight-level factors). Since 2, 4, and 16 are multiples of 2, we can make a design from
a design with all two-level factors as follows. This code creates each eight-level factor from the main effects and
all interactions of 3 two-level factors and each four-level factor from the main effects and all interactions of 2
two-level factors.

%mktdes(factors=x1-x240=2 y1-y48=4 z1-z16=8, run=factex)

Unfortunately, on many computers, this step will not run due to insufficient memory.

The fact that we could not directly create a design for this problem means we need to take a less direct approach.
We were able to get a design in less than five minutes as follows. First, we use the %MKTDES macro to generate
a design for just the four and eight-level factors. In addition, we create nine factors a b c d e f g h i,
by specifying otherfac=a|b|c|d|e|f|g|h|i, the main effects and interactions of 9 two-level variables.
By specifying these terms in the otherfac= option, we do not ensure that they are estimable. They only get
specified in the PROC FACTEX factors statement and not in the estimate= specification.

%let indexes = a b c d e f g h i;
%let nindexes = 9;
%let indbar = a|b|c|d|e|f|g|h|i;

%mktdes(otherfac=&indexes, factors=f1-f48=4 e1-e16=8,
nlev=2, size=512, run=factex)

Here are some of the lines of code that the macro generated.

proc factex;
factors a b c d e f g h i _1-_144 / nlev=2;
size design=512;

model estimate=(
_1|_2
.
.
.
_95|_96
_97|_98|_99
.
.
.
_142|_143|_144
);

251

output out=Cand1(drop=_:)
[_1 _2]=f1 nvals=(1 to 4)
.
.
.
[_95 _96]=f48 nvals=(1 to 4)
[_97 _98 _99]=e1 nvals=(1 to 8)
.
.
.
[_142 _143 _144]=e16 nvals=(1 to 8)
;

run; quit;

Next, we use a DATA step to add a variable y (not of interest) so PROC GLM can tell us which effects in
a|b|c|d|e|f|g|h|i are estimable, given the four and eight-level factors of interest. The results were stored
in the outstat= data set RES.

data temp; set cand1; y = 1; run;

proc glm data=temp outstat=results noprint;
class f1-f48 e1-e16;
model y = f1-f48 e1-e16 &indbar / ss1;
run;

Here are some selected observations in the outstat= data set.

Obs _NAME_ _SOURCE_ _TYPE_ DF SS F PROB
1 y ERROR ERROR 0 0 . .
2 y f1 SS1 3 0 . .
49 y f48 SS1 3 0 . .
50 y e1 SS1 7 0 . .
65 y e16 SS1 7 0 . .
66 y a SS1 0 0 . .
67 y b SS1 0 0 . .
68 y a*b SS1 0 0 . .
69 y c SS1 0 0 . .

129 y g SS1 1 0 . .
130 y a*g SS1 1 0 . .
145 y e*g SS1 1 0 . .
149 y c*e*g SS1 1 0 . .
423 y b*c*f*g*i SS1 0 0 . .
424 y a*b*c*f*g*i SS1 1 0 . .
576 y a*b*c*d*e*f*g*h*i SS1 0 0 . .

The four-level factors have 3 df, the eight-level factors have 7 df, many of the effects in a|b|c|d|e|f|g|h|i
have 0 df, and the remaining effects in a|b|c|d|e|f|g|h|i have 1 df, which means they are available for
creating two-level factors. The next step outputs just those effects with 1 df and counts them, storing the result
in macro variable &n.

data res2(keep=_source_);
set results;
if df = 1;
n + 1;
call symput(’n’,put(n,3.));
run;

Then we use each of these estimable 1 df terms to create the two-level factors. This next DATA step creates
255 two-level factors from the estimable effects in a|b|c|d|e|f|g|h|i. For example, when -SOURCE-
= ’a*g’, a two-level factor is created from the a*g interaction.

252

data candid(drop=&indexes termi);
set temp;
array t[&n];
array terms[&nindexes] &indexes;
do ind = 1 to &n;

set res2 point=ind;
t[ind] = 1;
do termi = 1 to &nindexes;

if index(_source_, substr(compress("&indexes"),termi,1))
then t[ind] = t[ind] * terms[termi];

end;
end;

run;

This next step checks the results.

proc glm;
class f1-f48 e1-e16;
model y = f1-f48 e1-e16 t1-t&n / ss2;
run;

Here are some selected results. If everything is right (and the full listing shows that it is), then all four-level
factors have 3 df, all eight-level factors have 7 df, and all two-level factors have 1 df.

Source DF Type II SS Mean Square F Value Pr > F

f1 3 0 0 . .
f48 3 0 0 . .
e1 7 0 0 . .
e16 7 0 0 . .
t1 1 0 0 . .
t255 1 0 0 . .

This design is saturated; there are 512 runs and 511 df plus the intercept.

Improving an Existing Design
Another useful technique is trying to improve an existing design. In this case, we use the %MKTDES macro to
create a design in 80 runs for 25 four-level factors using a 2048 run candidate set.

title ’25 Factors, Try to Improve an Existing Design’;

%mktdes(factors=x1-x25=4, nlev=2, size=2048, n=80, procopts=seed=7654321)

25 Factors, Try to Improve an Existing Design

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 82.9917 63.4906 59.2462 1.2232
2 82.2876 61.7434 55.3920 1.2404
3 82.1939 61.4429 55.5984 1.2434
4 82.1919 61.2833 53.8251 1.2451
5 82.1599 60.8513 53.8240 1.2495

253

Next, we create more potential candidate sets CAND2 through CAND5 of size min (128), 256, 512, and 1024.
The question we ask is can we improve our design, substituting points from all of our candidate sets?

%mktdes(factors=x1-x25=4, nlev=2, size=min, run=factex, cand=cand2)
%mktdes(factors=x1-x25=4, nlev=2, size=256, run=factex, cand=cand3)
%mktdes(factors=x1-x25=4, nlev=2, size=512, run=factex, cand=cand4)
%mktdes(factors=x1-x25=4, nlev=2, size=1024, run=factex, cand=cand5)

We can combine the candidate sets, eliminating any duplicates, by sorting them and then merging them on all of
the variables.

proc sort data=cand1; by x1-x25; run;
proc sort data=cand2; by x1-x25; run;
proc sort data=cand3; by x1-x25; run;
proc sort data=cand4; by x1-x25; run;
proc sort data=cand5; by x1-x25; run;

data cand;
merge cand1 cand2 cand3 cand4 cand5;
by x1-x25;
run;

Our new candidate set has 3946 runs. Then we take DESIGN, created from the 2048-run resolution III candidate
set and try to improve it using candidate set CAND. We explicitly run PROC OPTEX, specifying initde-
sign=design method=m-federov in the generate statement to do this. The %MKTDES macro does
not subsume all of the considerable functionality of the FACTEX and OPTEX procedures. Sometimes, for more
esoteric problems, we have to run those procedures directly.

proc optex seed=123 data=cand;
title ’25 Factors, Try to Improve an Existing Design’;
class x1-x25 / param=orthref;
model x1-x25;
generate n=80 initdesign=design method=m_federov;
output out=des2;
run; quit;

This step produced the following results.

25 Factors, Try to Improve an Existing Design

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 82.9917 63.4906 59.2462 1.2218

Normally, by default there are ten iterations from ten random starts. With initdesign= there is only one
iteration because there are no random starting points. For this particular problem, we did not do better than we
have done previously.

254

When Some Choice Sets are Fixed in Advance
Another useful technique is creating an efficient design when certain choice sets are fixed in advance and must
be included in the design. Stated differently, PROC OPTEX can be used to efficiently augment a small starting
design with other choice sets. We will illustrate this in the context of an unrealistic but pedagogical example. In
this case we want an efficient design with 9 two-level factors and 12 three-level factors in 36 runs. The best way
to create this design is simply to select the relevant columns from the L36 tabled design. Instead, we will create
a candidate set that contains this design and other choice sets and see if PROC OPTEX can find the L 36. We will
use the %MKTDES macro to create a candidate set. Then we merge this design with the L 36.

%let sets = 36; /* Number of choice sets */
%let alts = 6; /* Number of alternatives */
%let factors = b1-b12 a1-a9; /* Linear Design Factors */

data l36; /* a1-a11 - two-level, b1-b12 - three-level */
input (a1-a11 b1-b12) (23*1.) @@;
if mod(_n_, 3) = 0 then input;
datalines;

111111111112223322321121111111111133311331322311111111111111221121331
212111222122222121212232121112221233332323233121211122212111131313112
221211122212232213122322212111222133133212331322121112221112113231121
122121112222211232233221221211122233223133113312212111222113312112211
212212111222311223312112122121112231223311232221221211122123311223133
221221211122313131111322212212111231212122221322122121112123232333321
222122121112322112133112221221211131332232112222212212111121133132233
122212212112331311221211222122121131121223323212221221211122323311313
112221221212131322113331122212212132121332211111222122121132321133222
111222122122132231331131112221221232133121122111122212212132112322332
211122212212113113323232111222122132212211313121112221221133233221212
121112221222123333232311211122212232311113131212111222122131222212123
;

* Create candidate set for this situation;

%mktdes(factors=a1-a9=2 , step=1, run=factex)
%mktdes(factors=b1-b12=3, step=2, run=factex)

data both;
set l36 cand2;
run;

title ’Use MKTDES to Generate Design’;

%mktdes(factors=a1-a9=2 b1-b12=3, procopts=seed=51000,
iter=500, n=&sets, cand=both, run=optex)

proc optex data=both seed=7654321;
title ’Evaluate L_36 Design’;
class &factors / param=orthref;
model &factors;
generate n=&sets method=sequential initdesign=l36;
quit;

These steps produced the following results.

255

Use MKTDES to Generate Design

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 100.0000 100.0000 100.0000 0.9718
2 86.4336 74.4076 66.9333 1.1266
3 85.9883 71.9545 65.9474 1.1457
4 85.9390 72.6370 66.5752 1.1403
5 85.9325 72.4818 67.4581 1.1415

Evaluate L_36 Design

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 100.0000 100.0000 100.0000 0.9718

In 500 iterations, PROC OPTEX found the L36 only once. The second step shows the L36 is 100% efficient. It
is not surprising that the optimal design is hard to find. There are over 9� 10 53 designs with 36 runs that can be
selected from a 468-run candidate set. They could not all be evaluated in the entire history of the universe even
by a trillion computers each evaluating one trillion designs every nanosecond.

Next, we will see what happens if we give PROC OPTEX an initial design with fixed choice sets that must
appear in the final design. We sample four choice sets from the L36, store them in the data set INIT, and specify
augment= in the generate statement.

data init;
retain k 4; /* Randomly sample EXACTLY 4 points. */
set l36;
if uniform(111) < k / (37 - _n_) then do;

output;
k + -1;
end;

if k = 0 then stop;
run;

proc optex data=both seed=72555;
title "Use OPTEX to Augment 4 Existing Design Points";
class &factors / param=orthref;
model &factors;
generate n=36 method=m_federov augment=init;
quit;

These steps produced the following results.

256

Use OPTEX to Augment 4 Existing Design Points

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 100.0000 100.0000 100.0000 0.9718
2 100.0000 100.0000 100.0000 0.9718
3 100.0000 100.0000 100.0000 0.9718
4 100.0000 100.0000 100.0000 0.9718
5 84.7174 69.2709 64.6258 1.1677
6 84.5309 69.2777 63.4149 1.1676
7 84.2451 69.3293 66.9899 1.1672
8 84.0934 67.2020 62.6912 1.1855
9 83.6454 67.7776 65.5860 1.1804

10 83.2917 66.2490 64.3089 1.1940

With just four randomly chosen points from the L36 fixed, PROC OPTEX achieves 100% efficiency in four out
of ten tries.

Six-Level Factors
A researcher needs to create a design with 10 six-level factors. Fractional-factorial designs for six-level factors
cannot be created directly by design algorithms like PROC FACTEX uses. These algorithms work with levels
that are prime or a power of a prime.

2 � prime, can be created directly
3 � prime, can be created directly
4 � prime squared, can be created directly
5 � prime, can be created directly
6 � not prime, cannot be created directly
7 � prime, can be created directly
8 � prime cubed, can be created directly
9 � prime squared, can be created directly
10 � not prime, cannot be created directly
11 � prime, can be created directly
12 � not prime, cannot be created directly
13 � prime, can be created directly

and so on

Here is the most obvious approach.

title ’Six-Level Factors’;

%mktdes(factors=x1-x10=6, n=60, procopts=seed=7654321, size=1024)

This approach makes six-level factors from 3 two-level pseudo-factors. For example, x1 is created from

-1|-2|-3 with the mapping [-1 -2 -3]=x1 nvals=(1 to 6 1 6). The problem with this ap-
proach is eight levels are mapped to six, so the candidate set is imbalanced and it is likely the design will be
imbalanced. Most factors will have more ones and sixes than twos through fives.

257

Six-Level Factors

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 82.7201 64.9653 60.6132 1.1047
2 82.6667 65.5906 63.0546 1.1089
3 82.6580 64.7216 59.4145 1.1129
4 82.4430 65.0258 63.0317 1.1052
5 82.2820 64.2499 61.3416 1.1180

The %MKTDES macro provides a special way to handle six-level factors. You can use a two-step process to
create a design with two-level and three-level factors. Then you can use the %MKTDES6 macro to combine
them into six-level factors. The %MKTDES6 macro is provided with the %MKTDES macro. Use it in a DATA
step to combine the two= list and the three= list, storing the results in the two= variables. Then you can use
the %MKTDES macro to search for an efficient design.

%mktdes(factors=x1-x10=2, step=1, n=60, run=factex, size=32)
%mktdes(factors=b1-b10=3, step=2, n=60, run=factex, size=27)

data cand;
set cand2;
*---Create 6-levels from 2-levels and 3-levels---;
%mktdes6(two=x1-x10, three=b1-b10);
run;

%mktdes(factors=x1-x10=6, n=60, run=optex, cand=cand, procopts=seed=7654321)

Six-Level Factors

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 82.4576 62.2158 60.2928 1.1689
2 81.3020 62.1989 61.4858 1.1690
3 81.0982 61.5894 58.0499 1.1748
4 80.8932 60.3483 56.4664 1.1868
5 80.6477 60.1977 57.6953 1.1883

As you can see from the output, there is no guarantee that using the %MKTDES6 macro will produce a more
efficient design, but it should produce a better balanced design.

You could also base the design on only three-level factors by specifying nlev=3. This approach makes six-
level factors from 2 three-level pseudo-factors. For example, x1 is created from -1|-2 with the mapping [-1

-2]=x1 nvals=(1 to 6 1 4 6).

title ’Six-Level Factors’;

%mktdes(factors=x1-x10=6, n=60, nlev=3, procopts=seed=7654321)

258

Six-Level Factors

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 84.6808 67.4270 57.6530 1.0728
2 84.6808 67.4270 57.6530 1.0728
3 84.6808 67.4270 57.6530 1.0728
4 84.6808 67.4270 57.6530 1.0728
5 84.4295 66.5160 55.3460 1.0813

Similarly, you could base the design on five-level factors by specifying nlev=5. This approach makes six-level
factors from 2 five-level factors. For example, x1 is created from -1|-2 with the mapping [-1 -2]=x1
nvals=(1 to 6 1 to 6 1 to 6 1 to 6 1). This should make a much better balanced candidate set
than we got using two-level or three-level factors as the base.

title ’Six-Level Factors’;

%mktdes(factors=x1-x10=6, n=60, nlev=5, procopts=seed=7654321)

Six-Level Factors

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 78.4326 58.2505 59.2676 1.2059
2 77.6983 56.7929 58.3282 1.2217
3 77.4057 55.6193 55.9998 1.2343
4 77.2037 55.1903 55.8364 1.2400
5 77.1410 55.5539 55.9045 1.2337

You could base the design on two-level pseudo-factors, but more than the default three per factor. Recall that we
can make a six-level factor x1 from -1|-2|-3 and [-1 -2 -3]=x1 nvals=(1 to 6 1 6). To get
better balance, we could specify (4) in factors=x1-x10=6(4) to use 4 two-level pseudo-factors for each
six-level factor: -1|-2|-3|-4 with the mapping [-1 -2 -3 -4]=x1 nvals=(1 to 6 1 to 6 1
3 4 6).

title ’Six-Level Factors’;

%mktdes(factors=x1-x10=6(4), n=60, procopts=seed=7654321, size=1024)

259

Six-Level Factors

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 78.5916 59.1543 60.4969 1.1912
2 78.4422 58.3053 59.3152 1.2020
3 78.1623 57.6540 59.5914 1.2096
4 78.0190 57.6495 56.7703 1.2115
5 77.9914 58.4882 60.7042 1.1992

Of course all of these examples could be tried with different candidate set sizes. It is difficult to predict in advance
which approach will work best for any particular problem. However, like the results of this example, we have
frequently seen that using more than the minimum number of pseudo-factors tends to increase balance at a cost
of decreased efficiency.

Ten-Level Factors
A researcher needs to create a design with 5 ten-level factors. Like six-level factors (discussed starting on page
256), ten-level factors cannot be created directly. Here is the most obvious approach.

title ’Ten-Level Factors’;

%mktdes(factors=x1-x4=10, n=50, procopts=seed=7654321, size=1024)

This approach makes ten-level factors from 4 two-level pseudo-factors. For example, x1 is created from

-1|-2|-3|-4 with the mapping [-1 -2 -3 -4]=x1 nvals=(1 to 10 1 3 5 6 8 10). The
problem with this approach is 16 levels are mapped to ten, so the candidate set is imbalanced and it is likely the
design will be imbalanced. Most factors will have more 1’s, 3’s, 4’s, 6’s, 8’s, and 10’s than 2’s, 5’s, 7’s, and 9’s.

Ten-Level Factors

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 83.8294 69.3338 67.8612 1.0288
2 83.5641 68.9284 66.4021 1.0269
3 83.2275 68.1464 64.1257 1.0332
4 83.1952 68.1558 65.9666 1.0419
5 82.9385 67.2304 64.1725 1.0406

The %MKTDES macro provides a special way to handle ten-level factors. You can use a two-step process to
create a design with two-level and five-level factors. Then you can use the %MKTDES10 macro to combine
them into ten-level factors. The %MKTDES10 macro is provided with the %MKTDES macro. Use it in a DATA
step to combine the two= list and the five= list, storing the results in the two= variables. Then you can use
the %MKTDES macro to search for an efficient design.

%mktdes(factors=x1-x5=2, step=1, n=50, run=factex, size=16)
%mktdes(factors=b1-b5=5, step=2, n=50, run=factex, size=125)

260

data cand;
set cand2;
*---Create 10-levels from 2-levels and 5-levels---;
%mktdes10(two=x1-x5, five=b1-b5);
run;

%mktdes(factors=x1-x5=10, n=50, run=optex, cand=cand, procopts=seed=7654321)

Ten-Level Factors

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
--

1 74.8865 51.6941 51.6550 1.3341
2 74.5708 52.1228 50.7978 1.3286
3 74.3059 51.0803 50.5599 1.3420
4 74.3042 50.9776 50.4575 1.3434
5 74.1494 50.1395 51.4421 1.3546

As you can see from the output, there is no guarantee that using the %MKTDES10 macro will produce a more
efficient design, but it should produce a better balanced design. Of course the techniques illustrated for six-level
factors (starting on page 256) could also be used for ten-level factors.

261

The Macros
The autocall macros that are used in this report are documented in this section on the indicated pages.

Macro Page Release Purpose
%MKTDES 261 8.0 efficient linear experimental design
%MKTDES6 266 8.0 making six-level factors
%MKTDES10 267 8.0 making ten-level factors
%MKTRUNS 268 8.0 experimental design size
%CHOICEFF 270 8.0 efficient choice design
%PHCHOICE 288 8.0 customizing the printed output from a choice model
%MKTROLL 281 8.1 rolling a linear design into a choice design
%MKTMERGE 285 8.1 merging a choice design with choice data
%MKTALLO 286 8.1 processing allocation data

The “Release” column indicates the first release of the SAS System in which the macros are distributed. If you
are using version 8.0, go to http://www.sas.com/techsup/download/stat/ and get mlogit8.sas, or via anonymous
ftp, from ftp.sas.com, get techsup/download/stat/mlogit8.sas. These files contain all of the code used in this
report. You can also write saswfk@wnt.sas.com to request the macros. The Version 8.1 macros can be used in
Version 8.0; they were just finished too late to be shipped with Version 8.0. All of the macros have been updated
at least a little since Version 8.0 was shipped, so if you have not yet installed Version 8.1 or a later release, you
should get the latest versions of all of the macros.

If your site has installed the autocall libraries supplied by SAS Institute and uses the standard configuration of
SAS software supplied by the Institute, you need only to ensure that the SAS system option mautosource is
in effect to begin using the autocall macros. That is, the macros do not have to be included (for example with a
%include statement). They can be called directly. For more information about autocall libraries, refer to SAS
Macro Language: Reference, First Edition, 1997. On a PC for example, the autocall library may be installed in
the statnsasmacro directories. On MVS, each macro will be a different member of a PDS. For details on
installing autocall macros, consult your host documentation.

%MKTDES Macro Overview
Throughout this report, we used the %MKTDES autocall macro to design our experiments. At the heart of the
%MKTDES macro are PROC PLAN, PROC FACTEX, and PROC OPTEX. We often use the macro instead of
calling these procedures directly because the macro has a simpler syntax designed for some of the complicated
problems marketing researchers face. In extreme cases, a single-line macro call can generate hundreds of lines
of otherwise tedious to write procedure code.

The %MKTDES macro creates efficient experimental designs. You specify the names of the factors and the
number of levels for each factor. You also specify the number of runs you want in your final design. Here for
example is how you can create a design in 18 runs with 2 two-level factors (x1 and x2) and 3 three-level factors
(x3, x4, and x5).

%mktdes(factors=x1-x2=2 x3-x5=3, n=18)

You can also optionally specify interactions that you want to be estimable. The macro creates a candidate design
in which every effect you want to be estimable is estimable, but the candidate design is bigger than you want.
By default, the candidate set is stored in a SAS data set called CAND1. The macro then uses PROC OPTEX to
search the candidate design for an efficient final design. By default, the final experimental design is stored in a
SAS data set called DESIGN.

When the full-factorial is small (by default less than 2189 runs) the experimental design problem is straight-
forward. First, the macro uses PROC PLAN to create a full-factorial candidate set. Then PROC OPTEX searches
the full-factorial candidate set and will almost certainly find the optimal design or a very nearly optimal design

262

given sufficient iteration (for example, specify iter=100). Run time will typically be a few seconds or a few
minutes, but it could run up to an hour.

When the full-factorial design is larger, the design problem is less straight-forward and requires more thought.
Then the macro uses PROC FACTEX to create a fractional-factorial candidate set. The default size=, nlev=,
number of pseudo-factors, and so on will often give a good design. However, changing these values may increase
or decrease efficiency, 1, 2, 5, 10, perhaps up to 15%. This is the art of design � finding the options that make
the best design. Making a bigger candidate set may help, or it may not. Changing nlev= may make the design
better; it may make it worse. You have to try several things and see which one is best. Be careful how far you
generalize from your experiences. For example, for one problem, doubling the size of the candidate set may
increase efficiency a few percent. For the next problem it may decrease efficiency.

Start out small. In your first attempt to create a design for a problem, your candidate set should have no more
than a few-hundred runs, and run time should be well under a minute. Then you can try bigger candidate sets
and larger searches. Keep the size of your candidate set small, usually under 2000 - 5000. See page 108 for a
discussion of candidate set size. Here are some typical examples of usage:

*---Six three-level factors in 18 runs---;
%mktdes(factors=x1-x6=3, n=18)

*---Two two-level factors and 3 three-level factors in 18 runs---;
%mktdes(factors=x1-x2=2 x3-x5=3, n=18)

*---Mix in levels---;
%mktdes(factors=x2=2 x3=3 x4=4 x5=5 x6=6 x7=7 x8=8,

size=512, n=32);

*---Mixed 2-, 3-, 5-level factors, done in one step------;
%mktdes(factors=x1-x3=2 x4-x6=3 x7-x9=5, n=30)

*---Mixed 2-, 3-, 5-level factors, done in three steps------;
%mktdes(factors=x1-x3=2, n=30, run=factex, step=1)
%mktdes(factors=x4-x6=3, n=30, run=factex, step=2)
%mktdes(factors=x7-x9=5, n=30, run=factex optex, step=3)

*---Five ten-level factors, done in one step---;
%mktdes(factors=x1-x5=10, n=50)

*---Five ten-level factors, done in one step, based on seven-levels---;
%mktdes(factors=x1-x5=10, n=50, nlev=7)

*---Fifteen three-level factors, different candidate set sizes---;
%mktdes(factors=x1-x15=3, n=36, out=des1, cand=cand1)
%mktdes(factors=x1-x15=3, n=36, size=81*3, out=des2, cand=cand2)
%mktdes(factors=x1-x15=3, n=36, size=81*9, out=des3, cand=cand3)
%mktdes(factors=x1-x15=3, n=36, size=81*27, out=des4, cand=cand4)

*---A design with interactions---;
%mktdes(factors=x1-x3=2 x4-x6=3(3) x7-x9=4, n=32, size=1024,

interact=x1|x2|x3@2 x4*x7)

*---Look at one-way and two-way frequencies---;
proc summary print;

ways 1 2;
class x:;
run;

263

%MKTDES Macro Options
Here are the options you can use with the %MKTDES macro.

big= n

specifies the size at which the candidate set is considered to be big. By default, big=2188. If the size of the
full factorial is less than this size, and if PROC PLAN is in the run= list, the macro uses PROC PLAN instead
of PROC FACTEX to create the candidate set. The default of 2188 is max(211; 37) + 1). Specifying values as
large a big=5000 is probably reasonable. However, run time can be very slow with sizes much bigger than the
default.

cand= SAS-data-set
specifies the output data set with the candidate design (from PROC FACTEX or PROC PLAN). The default name
is “Cand” followed by the step number, for example: Cand1 for step 1, Cand2 for step 2, and so on.

coding= name
specifies the PROC OPTEX coding= option. If you are using Version 7 or an earlier release of the SAS System,
and if you have a balanced and orthogonal candidate set, you may want to specify coding=orthcan. With
Version 8 of the SAS System, this option is usually not needed.

factors= factor-list
specifies the factors and the number of levels for each factor. The factors= option must be specified. All other
options are optional. Optionally, the number of pseudo-factors can also be specified. Here is a simple example
of creating a design with 10 two-level factors.

%mktdes(factors=x1-x10=2)

First a factor list, which is a valid SAS variable list, is specified. The factor list must be followed by an equal
sign and an integer, which gives the number of levels. Multiple lists may be specified. For example, to create 5
two-level factors, 5 three-level factors, and 5 five-level factors, specify:

%mktdes(factors=x1-x5=2 x6-x10=3 x11-x15=5)

By default, this macro creates each factor from a minimum number of pseudo-factors. Pseudo-factors are used
to create factors of interest but are not themselves output. So for example, with nlev=2, a three-level factor x1
is created from 2 two-level pseudo-factors (-1 and -2) and their interaction by coding down:

(_1=1, _2=1) -> x1=1
(_1=1, _2=2) -> x1=2
(_1=2, _2=1) -> x1=3
(_1=2, _2=2) -> x1=1

This creates imbalance – the 1 level appears twice as often as 2 and 3. Somewhat better balance can be obtained
by instead using three pseudo-factors. The number of pseudo-factors is specified in parentheses after the number
of levels. Example:

%mktdes(factors=x1-x5=2 x6-x10=3(3))

Then the levels 1 to 8 are coded down to 1 2 3, 1 2 3, 1, 3, which is a little better balanced. The cost is candidate
set size may increase and efficiency may actually decrease. Many researchers are willing to sacrifice a little bit
of efficiency in order to achieve better balance.

264

generate= options
specifies PROC OPTEX generate statement options. By default, additional options are not added to the
generate statement.

interact= terms
specifies interactions that must be estimable. By default interactions are not guaranteed to be estimable. Exam-
ples:

interact=x1*x2
interact=x1*x2 x3*x4*x5
interact=x1-x5@2

Only “@” values of 2 or 3 are allowed. By default, no interactions are guaranteed to be estimable.

iter= n

specifies the PROC OPTEX iter= option which creates n designs. By default, iter=10.

keep=n
specifies the PROC OPTEX keep= option which keeps n designs. By default, keep=5.

nlev= n

specifies the number of levels from which factors are constructed through pseudo-factors and coding down. The
value must be a prime or a power of a prime: 2, 3, 4, 5, 7, 8, 9, 11 This option is used with PROC FACTEX:

factors factors / nlev=&nlev;

By default, the macro uses the minimum prime or power of a prime from the factors= list or 2 if no suitable
value is found.

method= name
specifies the PROC OPTEX method= search method option. The default is method=m-federov (modified
Federov).

n= n|SATURATED
specifies the PROC OPTEX n= option which is the number of runs in the final PROC OPTEX created design.
The default is the PROC OPTEX default and depends on the problem. Typically, you will not want to use the
default. Instead pick a value that is divisible by all or most of the numbers of levels and their products. The
n=saturated option creates a design with the minimum number of runs.

options= option-list
specifies general boolean options (currently there is only one):

options=eval evaluates the final efficiency using orthogonal coding. This is the default.

otherfac= variable-list
specifies other terms to mention in the factors statement of PROC FACTEX. These terms are not guaranteed
to be estimable. By default there are no other factors.

265

otherint= terms
specifies interaction terms that will only be specified with PROC OPTEX for multi-step macro invocations.
By default, no interactions are guaranteed to be estimable. Normally, interactions that are specified via the
interact= option affect both the PROC FACTEX and the PROC OPTEX model statements. In multi-step
problems, part of an interaction may not be in a particular PROC FACTEX step. In that case, the interaction
term must only appear in the PROC OPTEX step. For example, if x1 is created in one step and x4 is created in
another, and if the x1*x4 interaction must be estimable, specify otherint=x1*x4 on the final step, the one
that runs PROC OPTEX.

%mktdes(step=1, factors=x1-x3=2, n=30, run=factex)
%mktdes(step=2, factors=x4-x6=3, n=30, run=factex)
%mktdes(step=3, factors=x7-x9=5, n=30, run=factex optex, otherint=x1*x4)

out= SAS-data-set
specifies the output experimental design (from PROC OPTEX). By default, out=Design.

procopts=options
specifies PROC OPTEX statement options. The most common usage is procopts=seed=n where n is a
random seed. By default, no options are added to the PROC OPTEX statement.

run= procedure-list
specifies the list of procedures that the macro may run. Normally, the macro runs either PROC FACTEX or
PROC PLAN and then PROC OPTEX. By default, run=plan factex optex. You can omit steps � if for
example you only want the code listing � by omitting procedure names from this list. When both PLAN and
FACTEX are in the list, the macro chooses between them based on the size of the full factorial and the value of
big=. When PLAN is not in the list, the macro generates code for PROC FACTEX.

size= n|MIN
specifies the candidate set size. Start with the default size=min and see how big that is. If you want, subse-
quently you can specify larger values that are nlev=n multiples of the minimum size. This option is used with
PROC FACTEX:

size design=&size;

Say you specified nlev=2 or the macro defaulted to nlev=2. Increase the size= value by a factor of two
each time. For example, if size=min implies size=128, then 256, 512, 1024, and 2048 are reasonable sizes
to try. Integer expressions like 128*4 are allowed.

step= n

specifies the step number. By default, there is only one step. However, sometimes, a better design can be found
using a multi-step approach. Consider the problem of making a design with 3 two-level factors, 3 three-level
factors, and 3 five-level factors. The simplest approach is to do something like this – create a design from
two-level factors using pseudo-factors and coding down.

%mktdes(factors=x1-x3=2 x4-x6=3 x7-x9=5, n=30)

However, for small problems like this, the following three-step approach will usually be better.

%mktdes(step=1, factors=x1-x3=2, n=30, run=factex)
%mktdes(step=2, factors=x4-x6=3, n=30, run=factex)
%mktdes(step=3, factors=x7-x9=5, n=30, run=factex optex)

The first step uses PROC FACTEX to create a fractional-factorial design for the two-level factors. The second
step uses PROC FACTEX to create a fractional-factorial design for the three-level factors and cross it with the

266

two-level factors. The third step uses PROC FACTEX to create a fractional-factorial design for the five-level
factors and cross it with the design for the two and three-level factors and then run PROC OPTEX.

Each step stores globally two macro variables &&class&step and &&inter&step that are used to construct
the PROC OPTEX class and model statements. When step > 1, variables from the previous steps are used
in the class and model statements. In the example above, the following PROC OPTEX code is created by
step 3:

proc optex data=Cand3;
class

x1-x3
x4-x6
x7-x9
/ param=orthref;

model
x1-x3
x4-x6
x7-x9
;

generate n=30 iter=10 keep=5 method=m_federov;
output out=Design;
run; quit;

This step uses the previously stored macro variables class1=x1-x3 and class2=x4-x6.

where= where-clause
specifies a SAS where clause for candidate design, used to restrict the candidates. By default, the candidate
design is not restricted.

%MKTDES6 Macro Overview
Also included with the %MKTDES autocall macro is the %MKTDES6 macro. It is used along with %MKTDES
to make six-level factors. Since six is not a power of a prime number, six-level factors cannot be created by PROC
FACTEX except by coding down or using pseudo-factors. Alternatively, you could create two-level factors in one
step and then three-level factors in the next step. Then they could be combined, 2� 3, to make six-level factors.
You must run the %MKTDES autocall macro before running the %MKTDES6 macro since the %MKTDES6
macro is only loaded when %MKTDES is called. If you do not need to use %MKTDES first, run it with no
arguments.

%mktdes;

The macro will print the message “ERROR: FACTORS= must be specified.” and quit, but it will load
all three macros first.

%MKTDES6 is used in a DATA step to combine the two-level and three-level factors returning the six-level
factors in variables with the same names as the original two-level factors. Then the %MKTDES macro is run on
the results to search the candidate set for an efficient design.

*---Five six-level factors, done in multiple steps, post-processing---;
%mktdes(factors=x1-x5=2, n=30, run=factex, size=16, step=1)
%mktdes(factors=x6-x10=3, n=30, run=factex, size=81, step=2)

data cand;
set cand2;
*---Create 6-levels from 2-levels and 3-levels---;
%mktdes6(two=x1-x5, three=x6-x10);
run;

267

%mktdes(factors=x1-x5=6, n=30, run=optex, cand=cand)

%MKTDES6 Macro Options
The %MKTDES6 macro has two options.

two= variable-list
names the two-level factors.

three= variable-list
names the three-level factors.

%MKTDES10 Macro Overview
Also included with the %MKTDES autocall macro is the %MKTDES10 macro. It is used along with %MKTDES
to make ten-level factors. Since ten is not a power of a prime number, ten-level factors cannot be created by PROC
FACTEX except by coding down or using pseudo-factors. Alternatively, you could create two-level factors in one
step and then five-level factors in the next step. Then they could be combined, 2 � 5, to make ten-level factors.
You must run the %MKTDES autocall macro before running the %MKTDES10 macro since the %MKTDES10
macro is only loaded when %MKTDES is called. If you do not need to use %MKTDES first, run it with no
arguments.

%mktdes;

The macro will print the message “ERROR: FACTORS= must be specified.” and quit, but it will load
all three macros first.

%MKTDES10 is used in a DATA step to combine the two-level and five-level factors returning the ten-level
factors in variables with the same names as the original two-level factors. Then the %MKTDES macro is run on
the results to search the candidate set for an efficient design.

*---Five ten-level factors, done in multiple steps, post-processing---;
%mktdes(factors=x1-x5=2, n=50, run=factex, step=1)
%mktdes(factors=x6-x10=5, n=50, run=factex, step=2)

data cand;
set cand2;
*---Create 10-levels from 2-levels and 5-levels---;
%mktdes10(two=x1-x5, five=x6-x10);
run;

%mktdes(factors=x1-x5=10, n=50, run=optex, cand=cand)

%MKTDES10 Macro Options
The %MKTDES10 macro has two options:

two= variable-list
names the two-level factors.

five= variable-list
names the five-level factors.

268

%MKTRUNS Macro Overview
The %MKTRUNS autocall macro calculates reasonable sizes for main-effects experimental designs. It tries to
find sizes in which perfect balance and orthogonality can occur, or at least sizes in which violations of orthogo-
nality and balance are minimized. Typically, the macro takes one argument, a list of the number of levels of each
factor. No error checking is performed.

For example, with 3 two-level and 4 three-level factors, specify the macro with three 2’s and four 3’s, the numbers
of levels for all of the factors.

%mktruns(2 2 2 3 3 3 3)

The output of the macro in this example is:

Some Reasonable
Design Sizes Cannot Be
(Saturated=12) Violations Divided By

36 0
72 0

108 0
144 0
180 0
18 3 4
54 3 4
90 3 4

126 3 4
162 3 4

The macro reports that the saturated design has 12 runs and that 36 is an optimal design size. The macro picks
36 because it is the smallest integer >= 12 that can be divided by 2, 3, 2� 2, 2� 3, and 3 � 3. The macro also
reports 18 as a reasonable size. There are three violations with 18 because 18 cannot be divided by each of the
three pairs of 2� 2, so perfect orthogonality in the two-level factors will not be possible. The macro also reports
larger sizes. To see every size the macro considered, simply run proc print after the macro finishes. The output
from this step is not shown.

proc print label data=nums split=’-’;
id n;
run;

For 2 two-level factors, 2 three-level factors, 2 four-level factors, and 2 five-level factors specify:

%mktruns(2 2 3 3 4 4 5 5)

Here are the results:

Some Reasonable
Design Sizes Cannot Be

(Saturated=21) Violations Divided By

120 3 9 16 25
180 6 8 16 25
60 7 9 8 16 25

144 15 5 10 15 20 25
48 16 9 5 10 15 20 25
72 16 16 5 10 15 20 25
80 16 3 6 9 12 15 25
96 16 9 5 10 15 20 25

160 16 3 6 9 12 15 25
192 16 9 5 10 15 20 25

269

Among the smaller design sizes, 60 or 48 look like a good possibilities. The macro has a second, optional,
keyword parameter: max=. It specifies the maximum number of sizes to try. Usually you will not need to
specify the max= option. The smallest design considered is the saturated design. For example, this specification
tries 5000 sizes and reports that a perfect design can be found with 3600 runs.

%mktruns(2 2 3 3 4 4 5 5, max=5000)

Some Reasonable
Design Sizes Cannot Be

(Saturated=21) Violations Divided By

3600 0
720 1 25

1200 1 9
1440 1 25
1800 1 16
2160 1 25
2400 1 9
2880 1 25
4320 1 25
4800 1 9

Now consider again the problem with 3 two-level and 4 three-level factors, but this time we want to be estimable
the interaction of two of the two-level factors. So instead of specifying %mktruns(2 2 2 3 3 3 3) we
replace two of the 2’s with a 4.

%mktruns(2 4 3 3 3 3)

Some Reasonable
Design Sizes Cannot Be

(Saturated=13) Violations Divided By

72 0
144 0
36 1 8

108 1 8
180 1 8
18 6 4 8 12
24 6 9
48 6 9
54 6 4 8 12
90 6 4 8 12

Now we need 72 runs for perfect balance and orthogonality and there are six violations in 18 runs (4, 4�2, 4�3,
4� 3, 4� 3, and 4� 3).

%MKTRUNS Macro Options
The %MKTDES macro has one positional parameter list, that must be specified first. For positional param-
eters, just a value is specified (unlike keyword parameters which have the form KEY-WORD=value). The
macro also has a keyword parameter max=.

270

list
specifies the numbers of levels of all of the factors. This parameter must be specified first. For example, with 4
two-level factors, specify a list of 2 2 2 2:

%mktruns(2 2 2 2)

max= n

specifies the maximum number of design sizes to try. By default, max=200. The macro tries max=n sizes
starting with the saturated design and reports the best 10 sizes.

%CHOICEFF Macro Overview
The %CHOICEFF autocall macro is used to find efficient experimental designs for choice experiments. You
supply a candidate set of either alternatives or sets of alternatives. The macro searches the candidates for an
efficient experimental design� a design in which the variances of the parameter estimates are minimized, given
and assumed �.

There are two primary ways to use the macro:

� You can create a candidate set of alternatives. Then the macro creates a design consisting of choice sets
built from the alternatives you supplied. You must designate for each candidate alternative the design
alternative(s) for which it is a candidate. For a branded study with (say) four brands, you must create four
lists of candidate alternatives, one for each brand.

� You can create a candidate set of choice sets. Then the macro builds a design from the choice sets you
supplied.

Typically, you use as a candidate set either a full-factorial or fractional-factorial design, created with the %MKT-
DES macro. The macro either constructs a random initial design from the candidates or it uses an initial design
that you specify. Then it considers swapping out every design alternative/set and replacing it with each candidate
alternative/set. Swaps that increase efficiency are performed. Swapping continues until efficiency stabilizes.
Then the process is repeated with a different initial design. The best design is output for use.

The macro uses a modified Federov algorithm, just like PROC OPTEX. The key difference between this macro
and PROC OPTEX is this macro allows you to specify the true (or assumed true) parameters and optimizes the
variance matrix for a multinomial logit model, whereas PROC OPTEX optimizes the variance matrix for a linear
model which does not depend on the parameters.

Here are some usage samples. This first example creates a design for a generic model with 3 three-level factors.
First, the %MKTDES macro is used to create a candidate set where x1-x3 are the factors and f1-f3 are the
flags. Since this is a generic model, each alternative can appear anywhere, so all flags are a constant: f1=1
f2=1 f3=1. Then the %CHOICEFF macro is run to find an efficient design for the unbranded, purely generic
model assuming � = 0.

%mktdes(factors=x1-x3=3 f1-f3=1, run=plan)

%choiceff(data=cand1, model=class(x1-x3), nsets=9,
flags=f1-f3, beta=zero, seed=145)

proc print; var set x1-x3; run;

The option data=cand1 names the input data set, model=class(x1-x3) specifies the PROC TRANSREG
model statement for coding the design, nsets=9 specifies nine choice sets, flags=f1-f3 specifies the
three alternative flag variables, beta=zero specifies all zero parameters, and seed=145 specifies the random
number seed. Here is the output.

271

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2

Design Iteration D-Efficiency D-Error
--

1 0 0.7934651272 1.260294833
1 1.6792104859 0.5955179582
2 1.6954565904 0.589811621
3 1.6954565904 0.589811621

Design Iteration D-Efficiency D-Error
--

2 0 0.9948981202 1.0051280424
1 1.6252969583 0.6152721784
2 1.6779447607 0.5959671757
3 1.6872641431 0.5926754291
4 1.6872641431 0.5926754291

Final Results: Design = 1
Efficiency = 1.6954565904
D-Error = 0.589811621

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.69335 1 0.83267
2 x12 x1 2 0.69335 1 0.83267
3 x21 x2 1 0.67568 1 0.82199
4 x22 x2 2 0.67568 1 0.82199
5 x31 x3 1 0.70166 1 0.83765
6 x32 x3 2 0.72973 1 0.85424

==
6

Obs Set x1 x2 x3

1 1 1 3 1
2 1 2 1 2
3 1 3 2 3

4 2 2 1 3
5 2 3 3 1
6 2 1 2 2

7 3 1 1 3
8 3 3 3 2
9 3 2 2 1

10 4 1 3 1
11 4 2 1 3
12 4 3 2 2

13 5 1 2 1
14 5 2 3 2
15 5 3 1 3

272

16 6 1 2 2
17 6 3 1 1
18 6 2 3 3

19 7 2 2 1
20 7 1 1 2
21 7 3 3 3

22 8 3 1 1
23 8 1 3 3
24 8 2 2 2

25 9 3 2 3
26 9 2 3 2
27 9 1 1 1

The output consists of a list of the parameter names, values and labels, followed by two iteration histories, a
report in the most efficient design found, the parameter names, variances, df, and standard errors. Finally, the
design is printed.

These next steps manually create an optimal design for this problem and evaluate its efficiency using the initial
design options. The data step creates a cyclic design. In a cyclic design, the factor levels increase cyclically (1,
2, 3 or 2, 3, 1 or 3, 1, 2).

* Cyclic (Optimal) Design;
data x(keep=f1-f3 x1-x3);

retain f1-f3 1;
d1 = ceil(_n_ / 3); d2 = mod(_n_ - 1, 3) + 1; input d3 @@;
do i = -1 to 1;

x1 = mod(d1 + i, 3) + 1;
x2 = mod(d2 + i, 3) + 1;
x3 = mod(d3 + i, 3) + 1;
output;
end;

datalines;
1 2 3 3 1 2 2 3 1
;

%choiceff(data=cand1, model=class(x1-x3), nsets=9, flags=f1-f3,
beta=zero, init=x, initvars=x1-x3, intiter=0);

The option init=x specifies the initial design, initvars=x1-x3 specifies the factors in the initial design,
and intiter=0 specifies the number of internal iterations. Specify intiter=0 when you just want to eval-
uate the efficiency of a given design.

These next steps create a design for this same problem using the candidate set swapping algorithm. The first
steps create a candidate set of choice sets.

%mktdes(factors=x1-x9=3, size=2187, run=factex)

data key;
input (x1-x3) ($);
datalines;

x1 x2 x3
x4 x5 x6
x7 x8 x9
;

%mktroll(design=cand1, key=key, out=rolled)

%choiceff(data=rolled, model=class(x1-x3), nsets=9, nalts=3, beta=zero);

The nalts=3 option specifies that there are three alternatives. When we swap choice sets we need to specify

273

nalts=. The output from these steps is not appreciably different from what we saw previously, so it is not
shown.

These next steps create a design for an example with brand effects using the alternative swapping algorithm.

%mktdes(factors=x1-x3 Brand=3, run=plan)

data full(drop=i);
set cand1;
array f[3];
do i = 1 to 3; f[i] = (brand eq i); end;
run;

proc print data=full(obs=6); run;

%choiceff(data=full,
model=class(brand brand*x1 brand*x2 brand*x3 / zero=’ ’),
nsets=15, flags=f1-f3, beta=zero, converge=1e-12);

The option converge=1e-12 specifies a convergence criterion smaller than the default. Notice that the can-
didate set consists of branded alternatives with flags such that only brand n is considered for the nth alternative
of each choice set. In the interest of space, not all of the output is shown. Here is the output.

Obs x1 x2 x3 Brand f1 f2 f3

1 1 1 1 1 1 0 0
2 1 1 1 2 0 1 0
3 1 1 1 3 0 0 1
4 1 1 2 1 1 0 0
5 1 1 2 2 0 1 0
6 1 1 2 3 0 0 1

n Name Beta Label

1 Brand1 0 Brand 1
2 Brand2 0 Brand 2
3 Brand3 0 Brand 3
4 Brand1x11 0 Brand 1 * x1 1
5 Brand1x12 0 Brand 1 * x1 2
.
.
.

Design Iteration D-Efficiency D-Error
--

1 0 0 .
1 0 .

0.2968623575 (Ridged)
.
.
.
9 0 .

0.3060697239 (Ridged)

274

Design Iteration D-Efficiency D-Error
--

2 0 0 .
1 0 .

0.2988838889 (Ridged)
.
.
.
7 0 .

0.304627967 (Ridged)

Final Results: Design = 1
Efficiency = 0
D-Error = .

Redundant Variables:

Brand3

Variable Standard
n Name Label Variance DF Error

1 Brand1 Brand 1 4.08854 1 2.02201
2 Brand2 Brand 2 4.44804 1 2.10904
3 Brand3 Brand 3 . 0 .
4 Brand1x11 Brand 1 * x1 1 2.34244 1 1.53050
.
.
.

21 Brand3x32 Brand 3 * x3 2 2.23043 1 1.49346
==
20

Notice that at each step, the efficiency is zero, but a nonzero ridged value is printed. This model contains a
structural zero coefficient in Brand3. This can be seen from both the “Redundant Variables” list and from
looking at the variance and df table. This makes the efficiency of the design zero. However, the macro can
still optimize the goodness of the design by optimizing a ridged efficiency criterion. That is what is shown in
the iteration history. The option converge=1e-12 was specified because for this example, iteration stops
prematurely with the default convergence criterion. These next steps switch to a full-rank coding, dropping the
redundant variable Brand3, and using the output from the last step as the initial design.

%choiceff(data=full, init=best(keep=index), drop=brand3,
model=class(brand brand*x1 brand*x2 brand*x3 / zero=’ ’),
nsets=15, flags=f1-f3, beta=zero, converge=1e-12);

The option drop=brand3 is used to drop the parameter with the zero coefficient. In this usage of init= with
alternative swapping, the only part of the initial design that is required is the Index variable. It contains indices
into the candidate set of the alternatives that are used to make the initial design. This usage is for the situation
where the initial design was output from the macro. (In contrast, in the sample usage on page 272, the option
initvars=x1-x3was specified because the initial design was not created by the %CHOICEFF macro.) Here
is some of the output. Notice that now there are no zero parameters so D-efficiency can be directly computed.

Design Iteration D-Efficiency D-Error
--

1 0 0.685891335 1.4579568934
1 0.685891335 1.4579568934

275

Final Results: Design = 1
Efficiency = 0.685891335
D-Error = 1.4579568934

Variable Standard
n Name Label Variance DF Error

1 Brand1 Brand 1 4.08854 1 2.02201
2 Brand2 Brand 2 4.44804 1 2.10904

3 Brand1x11 Brand 1 * x1 1 2.34244 1 1.53050
4 Brand1x12 Brand 1 * x1 2 2.49307 1 1.57895

5 Brand2x11 Brand 2 * x1 1 2.08522 1 1.44403
6 Brand2x12 Brand 2 * x1 2 2.09687 1 1.44806

7 Brand3x11 Brand 3 * x1 1 2.34500 1 1.53134
8 Brand3x12 Brand 3 * x1 2 2.09753 1 1.44829

9 Brand1x21 Brand 1 * x2 1 2.21583 1 1.48857
10 Brand1x22 Brand 1 * x2 2 2.15893 1 1.46933

11 Brand2x21 Brand 2 * x2 1 2.16923 1 1.47283
12 Brand2x22 Brand 2 * x2 2 1.81748 1 1.34814

13 Brand3x21 Brand 3 * x2 1 2.17901 1 1.47615
14 Brand3x22 Brand 3 * x2 2 1.75709 1 1.32555

15 Brand1x31 Brand 1 * x3 1 2.03717 1 1.42729
16 Brand1x32 Brand 1 * x3 2 2.08386 1 1.44356

17 Brand2x31 Brand 2 * x3 1 2.12721 1 1.45850
18 Brand2x32 Brand 2 * x3 2 2.37880 1 1.54234

19 Brand3x31 Brand 3 * x3 1 2.13410 1 1.46085
20 Brand3x32 Brand 3 * x3 2 2.23043 1 1.49346

==
20

These next steps handle the same problem only this time using the set swapping algorithm and we will specify
a parameter vector that is not zero. At first, we will omit the beta= option to just see the coding. We specified
the effects option in the PROC TRANSREG class specificiation of -1, 0, 1 coding.

%mktdes(factors=x1-x9=3, size=2187, run=factex)

data key;
input (Brand x1-x3) ($);
datalines;

1 x1 x2 x3
2 x4 x5 x6
3 x7 x8 x9
;

%mktroll(design=cand1, key=key, alt=brand, out=rolled)

%choiceff(data=rolled, nsets=15, nalts=3,
model=class(brand)

class(brand*x1 brand*x2 brand*x3 / effects zero=’ ’))

Here is the output. This tells us the parameter names and the order in which we need to specify parameters.

n Name Beta Label

1 Brand1 . Brand 1
2 Brand2 . Brand 2

3 Brand1x11 . Brand 1 * x1 1
4 Brand1x12 . Brand 1 * x1 2

276

5 Brand2x11 . Brand 2 * x1 1
6 Brand2x12 . Brand 2 * x1 2

7 Brand3x11 . Brand 3 * x1 1
8 Brand3x12 . Brand 3 * x1 2

9 Brand1x21 . Brand 1 * x2 1
10 Brand1x22 . Brand 1 * x2 2

11 Brand2x21 . Brand 2 * x2 1
12 Brand2x22 . Brand 2 * x2 2

13 Brand3x21 . Brand 3 * x2 1
14 Brand3x22 . Brand 3 * x2 2

15 Brand1x31 . Brand 1 * x3 1
16 Brand1x32 . Brand 1 * x3 2

17 Brand2x31 . Brand 2 * x3 1
18 Brand2x32 . Brand 2 * x3 2

19 Brand3x31 . Brand 3 * x3 1
20 Brand3x32 . Brand 3 * x3 2

Now that we are sure we know the order of the parameters, we specify the assumed betas on the beta= option.
Assume we have some good reason for picking these numbers. We also specified n=100 on this run, which is a
sample size we are considering.

%choiceff(data=rolled, nsets=15, nalts=3, n=100,
beta=1 2 -0.5 0.5 -0.75 0.75 -1 1

-0.5 0.5 -0.75 0.75 -1 1 -0.5 0.5 -0.75 0.75 -1 1,
model=class(brand)

class(brand*x1 brand*x2 brand*x3 / effects zero=’ ’))

Here is some of the output. Notice that parameters and test statistics are incorporated into the output. The n=
value is incorporated into the variance matrix and hence the efficiency statistics, variances and tests.

Prob >
Variable Assumed Standard Squared

n Name Label Variance Beta DF Error Wald Wald

1 Brand1 Brand 1 0.014207 1.00 1 0.11919 8.3897 0.0001
2 Brand2 Brand 2 0.027615 2.00 1 0.16618 12.0353 0.0001

3 Brand1x11 Brand 1 * x1 1 0.012304 -0.50 1 0.11092 -4.5076 0.0001
4 Brand1x12 Brand 1 * x1 2 0.008256 0.50 1 0.09086 5.5027 0.0001

5 Brand2x11 Brand 2 * x1 1 0.009015 -0.75 1 0.09495 -7.8991 0.0001
6 Brand2x12 Brand 2 * x1 2 0.013755 0.75 1 0.11728 6.3949 0.0001

7 Brand3x11 Brand 3 * x1 1 0.031508 -1.00 1 0.17751 -5.6336 0.0001
8 Brand3x12 Brand 3 * x1 2 0.019487 1.00 1 0.13960 7.1635 0.0001

9 Brand1x21 Brand 1 * x2 1 0.011585 -0.50 1 0.10763 -4.6454 0.0001
10 Brand1x22 Brand 1 * x2 2 0.010046 0.50 1 0.10023 4.9885 0.0001

11 Brand2x21 Brand 2 * x2 1 0.012541 -0.75 1 0.11199 -6.6972 0.0001
12 Brand2x22 Brand 2 * x2 2 0.015142 0.75 1 0.12305 6.0950 0.0001

13 Brand3x21 Brand 3 * x2 1 0.020645 -1.00 1 0.14368 -6.9598 0.0001
14 Brand3x22 Brand 3 * x2 2 0.018324 1.00 1 0.13537 7.3874 0.0001

15 Brand1x31 Brand 1 * x3 1 0.008624 -0.50 1 0.09287 -5.3841 0.0001
16 Brand1x32 Brand 1 * x3 2 0.009486 0.50 1 0.09740 5.1336 0.0001

17 Brand2x31 Brand 2 * x3 1 0.011025 -0.75 1 0.10500 -7.1428 0.0001
18 Brand2x32 Brand 2 * x3 2 0.013454 0.75 1 0.11599 6.4659 0.0001

277

19 Brand3x31 Brand 3 * x3 1 0.023265 -1.00 1 0.15253 -6.5562 0.0001
20 Brand3x32 Brand 3 * x3 2 0.017184 1.00 1 0.13109 7.6286 0.0001

==
20

These next steps create a design for a cross-effects model with five brands at three prices and a constant alterna-
tive. Note the choice set swapping algorithm can handle cross-effects but not the alternative swapping algorithm.

%mktdes(factors=x1-x5=3, run=plan)

data key;
input (Brand Price) ($);
datalines;

1 x1
2 x2
3 x3
4 x4
5 x5
. .
;

%mktroll(design=cand1, key=key, alt=brand, out=rolled, keep=x1-x5)

%choiceff(data=rolled,
model=class(brand brand*price / zero=none)

class(brand / zero=none) * identity(x1-x5),
nsets=20, nalts=6, beta=zero);

Here is a tiny portion of the output.

Redundant Variables:

Brand1Price3 Brand2Price3 Brand3Price3 Brand4Price3 Brand5Price3 Brand1x1
Brand2x2 Brand3x3 Brand4x4 Brand5x5

Next, we will run the macro again, this time requesting a full-rank model. The list of dropped names was created
by copying from the redundant variable list. Also, zero=none was changed to zero=’ ’ so no level would
be zeroed for Brand but the last level of Price would be zeroed.

%choiceff(data=rolled,
model=class(brand brand*price / zero=’ ’)

class(brand / zero=none) * identity(x1-x5),
drop=Brand1x1 Brand2x2 Brand3x3 Brand4x4 Brand5x5,
nsets=20, nalts=6, beta=zero);

Here is the last part of the output.

Variable Standard
n Name Label Variance DF Error

1 Brand1 Brand 1 13.3592 1 3.65503
2 Brand2 Brand 2 11.0073 1 3.31773
3 Brand3 Brand 3 13.5813 1 3.68528
4 Brand4 Brand 4 12.2061 1 3.49372
5 Brand5 Brand 5 12.7614 1 3.57231

6 Brand1Price1 Brand 1 * Price 1 2.8638 1 1.69226
7 Brand1Price2 Brand 1 * Price 2 3.8494 1 1.96198

8 Brand2Price1 Brand 2 * Price 1 2.8912 1 1.70034
9 Brand2Price2 Brand 2 * Price 2 3.6813 1 1.91866

278

10 Brand3Price1 Brand 3 * Price 1 2.8555 1 1.68983
11 Brand3Price2 Brand 3 * Price 2 3.6010 1 1.89764

12 Brand4Price1 Brand 4 * Price 1 2.7100 1 1.64619
13 Brand4Price2 Brand 4 * Price 2 5.2074 1 2.28196

14 Brand5Price1 Brand 5 * Price 1 2.8557 1 1.68987
15 Brand5Price2 Brand 5 * Price 2 3.7769 1 1.94342

16 Brand2x1 Brand 2 * x1 0.7155 1 0.84586
17 Brand3x1 Brand 3 * x1 0.7159 1 0.84611
18 Brand4x1 Brand 4 * x1 0.7155 1 0.84588
19 Brand5x1 Brand 5 * x1 0.7299 1 0.85437

20 Brand1x2 Brand 1 * x2 0.7227 1 0.85012
21 Brand3x2 Brand 3 * x2 0.7372 1 0.85858
22 Brand4x2 Brand 4 * x2 0.7401 1 0.86026
23 Brand5x2 Brand 5 * x2 0.7231 1 0.85034

24 Brand1x3 Brand 1 * x3 0.7141 1 0.84507
25 Brand2x3 Brand 2 * x3 0.7206 1 0.84889
26 Brand4x3 Brand 4 * x3 0.7275 1 0.85292
27 Brand5x3 Brand 5 * x3 0.7141 1 0.84506

28 Brand1x4 Brand 1 * x4 0.6867 1 0.82866
29 Brand2x4 Brand 2 * x4 0.6773 1 0.82298
30 Brand3x4 Brand 3 * x4 0.6774 1 0.82307
31 Brand5x4 Brand 5 * x4 0.6773 1 0.82299

32 Brand1x5 Brand 1 * x5 0.7282 1 0.85334
33 Brand2x5 Brand 2 * x5 0.7137 1 0.84480
34 Brand3x5 Brand 3 * x5 0.7141 1 0.84507
35 Brand4x5 Brand 4 * x5 0.7260 1 0.85204

==
35

%CHOICEFF Macro Options
The following options can be used with the %CHOICEFF macro. You must specify both the model= and
nsets= options and either the flags= or nalts= options. The rest of the options are optional.

You must specify both of these next two options.

model= model-specification
specifies a PROC TRANSREG model statement list of effects. There are many potential forms for the model
specification and a number of options. See the SAS/STAT PROC TRANSREG documentation.

Generic effects example:

model=class(x1-x3),

Brand and alternative-specific effects example:

model=class(b)
class(b*x1 b*x2 b*x3 / effects zero=’ ’),

Brand, alternative-specific, and cross effects:

model=class(b b*p / zero=’ ’)
class(b / zero=none) * identity(x1-x5),

279

nsets= n

specifies the number of choice sets desired.

You must specify exactly one of these next two options. When the candidate set consists of alternatives to be
swapped, specify flags=. When the candidate set consists of sets of entire choice sets to be swapped, specify
nalts=.

flags= variable-list
flags the alternative(s) for which each candidate may be used. There must be one flag variable per alternative.
For example, with three alternatives, specify flags=f1-f3, and create a candidate set where: alternative 1
candidates are indicated by f1=1 f2=0 f3=0, alternative 2 candidates are indicated by f1=0 f2=1 f3=0,
alternative 3 candidates are indicated by f1=0 f2=0 f3=1.

If every candidate can be used in all alternatives, then the flags are constant: f1=1 f2=1 f3=1.

nalts= n

specifies the number of alternatives in each choice set.

The rest of the parameters are optional. You may specify zero or more of them.

beta= list
specifies the true parameters. By default, when beta= is not specified, the macro just reports on coding. You
may specify beta=zero to assume all zeros. Otherwise specify a number list: beta=1 -1 2 -2 1 -1.

bestcov= SAS-data-set
specifies a name for the data set containing the covariance matrix for the best design. By default, this data set is
called BESTCOV.

bestout= SAS-data-set
specifies a name for the data set containing the best design. By default, this data set is called BEST.

converge= n

specifies the D-efficiency convergence criterion. By default, converge=0.005.

cov= SAS-data-set
specifies a name for the data set containing all of the covariance matrices for all of the designs. By default, this
data set is called COV.

data= SAS-data-set
specifies the input choice candidate set. By default, the macro uses the last data set created.

280

drop= variable-list
specifies a list of variables to drop from the model. If you specified a less-than-full-rank model= specification,
you can use drop= to produce a full rank coding. When there are redundant variables the macro prints a list that
you can use in the drop= option on a subsequent run.

fixed= variable-list
names the variable that flags the fixed alternatives. When fixed=variable is specified, the init= data set
must contain the named variable, which indicates which alternatives are fixed (cannot be swapped out) and which
ones may be changed. Example: fixed=fixed, init=init, initvars=x1-x3

� 1 - means this alternative may never be swapped out.

� 0 - means this alternative is used in the initial design, but it may be swapped out.

� . - means this alternative should be randomly initialized, and it may be swapped out.

fixed= may be specified only when both init= and initvars= is specified.

init= SAS-data-set
specifies an input initial design data set. Null means a random start. One usage is to specify the bestout=
data set for an initial start. When flags= is specified, init= must contain the index variable. Example:
init=best(keep=index). When nalts= is specified, init= must contain the choice set variable. Ex-
ample: init=best(keep=set).

Alternatively, the init= data set can contain an arbitrary design, potentially created outside this macro.
Then you must also specify initvars=factors, where factors are the factors in the design, for example
initvars=x1-x3. When alternatives are swapped, this data set must also contain the flags= variables.
When init= is specified with initvars=, the data set may also contain a variable specified on the fixed=
option, which indicates which alternatives are fixed, and which ones can be swapped in and out.

intiter= n

specifies the maximum number of internal iterations. Specify intiter=0 to just evaluate efficiency of an
existing design. By default, intiter=10.

initvars= variable-list
specifies the factor variables in the init= data set that must match up with the variables in the data= data set.
See init=. All of these variables must be of the same type.

maxiter= n

specifies the maximum iterations (designs to create). By default, maxiter=10.

morevars= variable-list
specifies more variables to add to the model. This option gives you the ability to specify a list of variables to
copy along as is, through the TRANSREG coding, then add them to the model.

n= n

Number of observations to use in variance matrix formula. By default, n=1.

281

options= options-list
lists binary options, for example options=coded tests. By default, options=tests.

� coded - prints the coded candidate set.

� detail - prints the details of the swaps.

� tests - prints the diagonal of covariance matrix, and hypothesis tests for this n and beta. When beta is
not zero, the results include a Wald test statistic which is normally distributed (Beta / Standard Error) and
the probability of a larger squared Wald statistic.

� notes - stops the macro from submitting the statement options nonotes.

� orthcan - orthogonalizes the candidate set.

� nocode - skips the PROC TRANSREG coding stage, assuming that WORK.TMP–CAND was created
by a previous step. This is most useful with set swapping when the candidate set can be big. It is important
with options=nocode to note that the effect of morevars= and drop= in previous runs has already
been taken care of, so do not specify them (unless for instance you want to drop still more variables).

out= SAS-data-set
specifies a name for the output SAS data set with the final designs. By default, this data set is called RESULTS.

seed= n

specifies a random number seed. By default seed=0 and clock time is used as the random number seed.

set= variable
specifies a choice set ID variable. For release 8.0 (or earlier releases) if you are using the 8.0 autocall macro and
not an updated macro, when you are using the set swapping algorithm and a large candidate set, specify a variable
that identifies the choice sets. Then PROC TRANSREG will code by &set which may be more efficient. The
8.1 macro ignores this option and codes up to blocks of 5000 observations at a time.

submat= number-list
specifies a submatrix for which efficiency calculations are desired. Specify an index vector. For example, with
3 three-level factors, a, b, and c, and the model class(a b c a*b), Specify submat=1:6, to see the
efficiency of just the 6� 6 matrix of main effects. Specify submat=3:6, to see the efficiency of just the 4 x 4
matrix of b and c main effects.

weight= weight-variable
specifies an optional weight variable. Typical usage is with an availability design. Give unavailable alternatives
a weight of zero and available alternatives a weight of one.

%MKTROLL Macro Overview
The %MKTROLL autocall macro is used for manipulating the experimental design for choice experiments. It
takes as input a SAS data set containing an experimental design with one row per choice set, for example a
design created by the %MKTDES macro. This data set is specified in the design= option. This data set has
one variable for each attribute of each alternative in the choice experiment.

The output from this macro is an out= SAS data set containing the experimental design with one row per
alternative per choice set. There is one column for each different attribute. For example, in a simple branded

282

study, design= may contain the variables x1-x5 which contain the prices of each of five alternative brands.
The output data set would have one factor, Price, that contains the price of each of the five alternatives. In
addition, it would have the number (or optionally the name) of each alternative.

The rules for determining the mapping between factors in the design= data set and the out= data set are
contained in the key= data set. For example, assume that the design= data set contains the variables x1-x5
which contain the prices of each of five alternative brands: Brand A, B, C, D, and E. Here is how you would
create the key= data set. The choice design has two factors, Brand and Price. Brand A price is made from
x1, Brand B price is made from x2, ..., and Brand E price is made from x5.,

data key;
input (Brand Price) ($);
datalines;

A x1
B x2
C x3
D x4
E x5
;

This data set has two variables, Brand contains the brand names and Price contains the names of the factors
that are used to make the price effects for each of the alternatives. The out= data set will contain the variables
with the same names as the variables in the key= data set.

Here is how you can create the design with one row per choice set:

%mktdes(factors=x1-x5=3, n=12)

Here is how you can create the design with one row per alternative per choice set:

%mktroll(design=design, key=key, out=sasuser.design, alt=brand)

For example, if the data set DESIGN contains the row:

Obs x1 x2 x3 x4 x5

9 1 3 2 3 1

Then the data set SASUSER.DESIGN contains the rows:

Obs Set Brand Price

41 9 A 1
42 9 B 3
43 9 C 2
44 9 D 3
45 9 E 1

The price for Brand A is made from x1=1, ..., and the price for Brand E is made from x5=3.

Now assume that there are three alternatives, each composed of four factors: Brand, Price, Size, Color,
and Shape. In addition, there is a constant alternative. First, the %MKTDES macro is used to create a design
with 12 factors, one for each attribute of each alternative.

%mktdes(factors=x1-x12=2, n=16)

Then the key= data set is created. It shows that there are three brands, A, B, and C, & None.

283

data key;
input (Brand Price Size Color Shape) ($);
datalines;

A x1 x2 x3 x4
B x5 x6 x7 x8
C x9 x10 x11 x12
None

;

Brand A is created from Brand = ’A’, Price = x1, Size = x2, Color = x3, Shape = x4.

Brand B is created from Brand = ’B’, Price = x5, Size = x6, Color = x7, Shape = x8.

Brand C is created from Brand = ’C’, Price = x9, Size = x10, Color = x11, Shape = x12.

The constant alternative is created from Brand = ’None’ and none of the attributes. The ’.’ notation is used to
indicate missing values in input data sets. The actual values in the SAS data set will be blank (character missing).

Here is how you create the design with one row per alternative per choice set:

%mktroll(key=key, design=design, out=sasuser.design, alt=brand)

For example, if the data set DESIGN contains the row:

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

8 2 1 1 1 1 1 2 2 2 2 1 2

Then the data set SASUSER.DESIGN contains the rows:

Obs Set Brand Price Size Color Shape

29 8 A 2 1 1 1
30 8 B 1 1 2 2
31 8 C 2 2 1 2
32 8 None

Now assume like before that there are three alternatives, each composed of four factors: Brand, Price, Size,
Color, and Shape. In additition, there is a constant alternative. Also, there is an alternative-specific factor,
Pattern, that only applies to Brand A and Brand C. First, the %MKTDES macro is used to create a design
with 14 factors, one for each attribue of each alternative.

%mktdes(factors=x1-x14=2, n=16)

Then the key= data set is created. It shows that there are three brands, A, B, and C, plus None.

data key;
input (Brand Price Size Color Shape Pattern) ($);
datalines;

A x1 x2 x3 x4 x13
B x5 x6 x7 x8 .
C x9 x10 x11 x12 x14
None

;

Brand A is created from Brand = ’A’, Price = x1, Size = x2, Color = x3, Shape = x4, Pattern =
x13.

Brand B is created from Brand = ’B’, Price = x5, Size = x6, Color = x7, Shape = x8.

Brand C is created from Brand = ’C’, Price = x9, Size = x10, Color = x11, Shape = x12, Pattern =
x14.

284

The constant alternative is Brand = ’None’ and none of the attributes.

Here is how you can create the design with one row per alternative per choice set:

%mktroll(key=key, design=design, out=sasuser.design, alt=brand)

For example, if the data set DESIGN contains the row:

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

8 2 1 1 1 1 1 2 2 2 2 1 2 2 1

Then the data set SASUSER.DESIGN contains the rows:

Obs Set Brand Price Size Color Shape Pattern

29 8 A 2 1 1 1 2
30 8 B 1 1 2 2 .
31 8 C 2 2 1 2 1
32 8 None

Now assume we are going to fit a model with price cross effects so we need x1, x5, and x9 (the three price
effects) available in the out= data set.

%mktroll(key=key, design=design, out=sasuser.design, alt=brand,
keep=x1 x5 x9)

Now the data set also contains the three original price variables.

Obs Set Brand Price Size Color Shape Pattern x1 x5 x9

29 8 A 2 1 1 1 2 2 1 2
30 8 B 1 1 2 2 . 2 1 2
31 8 C 2 2 1 2 1 2 1 2
32 8 None 2 1 2

The macro performs some rudimentary error checking. Every value in the key= data set must appear as a
variable in the design= data set. The macro prints a warning if it encounters a variable name in the design=
data set that does not appear as a value in the key= data set.

%MKTROLL Macro Options
The following options can be used with the %CHOICEFF macro. You must specify the design= and key=
options.

alt= variable
names the variable in the key= data set that contains the name of each alternative. Often this will be something
like alt=Brand. When alt= is not specified, the macro creates a variable -Alt- that contains the alternative
number.

debug= list
notes - do not specify options nonotes during most of the macro.

285

design= SAS-data-set
names an input SAS data set with one row per choice set. The design= option must be specified.

keep= variable-list
names factors from the design= data set that should also be kept in the out= data set. This option is useful to
keep terms that will be used to create cross effects.

key= SAS-data-set
names an input SAS data set containing the rules for mapping the design= data set to the out= data set. The
key= option must be specified.

out= SAS-data-set
The out= option names the output SAS data set. If out= is not specified, the DATAn convention is used.

set= variable
names the variable in the out= data set that will contain the choice set number. By default this variable is named
Set.

%MKTMERGE Macro Overview
The %MKTMERGE autocall macro merges a data set containing an experimental design for a choice model with
the data for the choice model. Here is a typical usage of the macro.

%mktmerge(design=rolled, data=results, out=res2,
nsets=18, nalts=5, setvars=choose1-choose18)

The design= data set comes from the %MKTROLL macro. The data= data set contains the data, and the
setvars= variables in the data= data set contain the numbers of the chosen alternatives for each of the 18
choice sets. The nsets= option specifies the number of choice sets, and the nalts= option specifies the
number of alternatives. The out= option names the output SAS data set that contains the experimental design
and a variable c that contains 1 for the chosen alternatives (first choice) and 2 for unchosen alternatives (second
or subsequent choice).

When the data= data set contains a blocking variable, name it on the blocks= option. When there is blocking,
it is assumed that the design= data set contains blocks of nalts� nsets observations, one set per block. The
blocks= variable must contain values 1, 2, ..., n for n blocks. Here is an example of using the %MKTMERGE
macro with blocking.

%mktmerge(design=rolled, data=results, out=res2, blocks=form,
nsets=18, nalts=5, setvars=choose1-choose18)

%MKTMERGE Macro Options
The following options can be used with the %MKTMERGE macro. You must specify the design=, nalts=,
nsets=, and setvars= options.

blocks= 1|variable
either contains a 1 if there is no blocking or the name of a variable in the data= data set that contains the block
number. When there is blocking, it is assumed that the design= data set contains blocks of nalts � nsets

observations, one set per block. The blocks= variable must contain values 1, 2, ..., n for n blocks.

286

data= SAS-data-set
names an input SAS data set with data for the choice model. By default the data= data set is the last data set
created.

design= SAS-data-set
names an input SAS data set for a choice model. This data set may have been created for example with the
%MKTROLL macro. This option must be specified.

nalts= n

is the number of alternatives. This option must be specified.

nsets= n

is the number of choice sets. This option must be specified.

out= SAS-data-set
names the output SAS data set. If out= is not specified, the DATAn convention is used. This data set contains the
experimental design and a variable c that contains 1 for the chosen alternatives (first choice) and 2 for unchosen
alternatives (second or subsequent choice).

setvars= variable-list
is a list of variables, one per choice set, in the data= data set that contain the numbers of the chosen alternatives.
It is assumed that the values of these variables range from 1 to nalts. This option must be specified.

stmts= SAS-statements
specifies additional statements like format and label statements.

%MKTALLO Macro Overview
The %MKTALLO autocall macro is used for manipulating data for a choice experiment. It takes as input a data
set with one row for each alternative of each choice set. For example, in a study with 10 brands plus a constant
alternative and 27 choice sets, there are 27 * 11 = 297 observations. Here is an example input data set. It contains
a choice set variable, product attributes (Brand and Price) and a frequency variable (Count) that contains
the total number of times that each alternative was chosen.

Obs Set Brand Price Count

1 1 0
2 1 Brand 1 $50 103
3 1 Brand 2 $75 58
4 1 Brand 3 $50 318
5 1 Brand 4 $100 99
6 1 Brand 5 $100 54

287

7 1 Brand 6 $100 83
8 1 Brand 7 $75 71
9 1 Brand 8 $75 58

10 1 Brand 9 $75 100
11 1 Brand 10 $50 56
.
.
.

296 27 Brand 9 $100 94
297 27 Brand 10 $50 65

The end result is a data set with twice as many observations that contains the number of times each alternative
was chosen and the number of times it was not chosen. This data set also contains a variable c with values 1 for
first choice and 2 for second or subsequent choice.

Obs Set Brand Price Count c

1 1 0 1
2 1 1000 2
3 1 Brand 1 $50 103 1
4 1 Brand 1 $50 897 2
5 1 Brand 2 $75 58 1
6 1 Brand 2 $75 942 2
7 1 Brand 3 $50 318 1

8 1 Brand 3 $50 682 2
.
.
.

593 27 Brand 10 $50 65 1
594 27 Brand 10 $50 935 2

Here is a sample usage:

%mktallo(data=allocs2, out=allocs3, nalts=11,
vars=set brand price, freq=Count)

The option data= names the input data set, out= names the output data set, nalts= specifies the number of
alternatives, vars= names the variables in the data set that will be used in the analysis excluding the freq=
variable, and freq= names the frequency variable.

%MKTALLO Macro Options
The following options can be used with the %MKTALLO macro. You must specify the nalts=, freq=, and
vars= options.

data= SAS-data-set
names the input SAS data set. By default, the macro uses the last data set created.

freq= variable
names the frequency variable, which contains the number of times this alternative was chosen. This option must
be specified.

288

nalts= n

names the number of alternatives (including if appropriate the constant alternative). This option must be speci-
fied.

out= SAS-data-set
names the output SAS data set. The default is out=allocs.

vars= variable-list
names the variables in the data set that will be used in the analysis but not the freq= variable. This option must
be specified.

%PHCHOICE Macro Overview
The %PHCHOICE autocall macro is used to customize the discrete choice output from PROC PHREG. Typically,
you run the following macro once to customize the PROC PHREG output.

%phchoice(on)

The macro uses PROC TEMPLATE and ODS (Output Delivery System) to customize the output of PROC
PHREG. Running this code edits the templates and stores copies in SASUSER. These changes will remain in
effect until you delete them. Note that these changes assume that each effect in the choice model has a variable
label associated with it so there is no need to print variable names. If you are coding with PROC TRANSREG,
this will usually be the case. To return to the default output from PROC PHREG, run the following macro.

%phchoice(off)

We are most interested in the “Analysis of Maximum Likelihood Estimates” table, which contains the parameter
estimates. We can first use PROC TEMPLATE to identify the template for the parameter estimates table and then
edit the template. First, let’s have PROC TEMPLATE display the templates for PROC PHREG. The source
stat.phreg statement specifies that we want to see PROC TEMPLATE source code for the STAT product and
the PHREG procedure.

proc template;
source stat.phreg;
run;

If we search the results for the “Analysis of Maximum Likelihood Estimates” table we find the following code,
which defines the Stat.Phreg.ParameterEstimates table.

define table Stat.Phreg.ParameterEstimates;
notes "Parameter Estimates Table";
dynamic Confidence NRows;
column Variable DF Estimate StdErr ChiSq ProbChiSq HazardRatio HRLowerCL

HRUpperCL Label;
header h1 h2;

define h1;
text "Analysis of Maximum Likelihood Estimates";
space = 1;
spill_margin;

end;

define h2;
text Confidence BEST8. %nrstr("%% Hazard Ratio Confidence Limits");
space = 0;
end = HRUpperCL;
start = HRLowerCL;
spill_margin = OFF;

end;

289

define Variable;
header = "Variable";
style = RowHeader;
id;

end;

define DF;
parent = Common.ParameterEstimates.DF;

end;

define Estimate;
header = "#Parameter#Estimate#";
format = D10.;
parent = Common.ParameterEstimates.Estimate;

end;

define StdErr;
header = "#Standard#Error#";
format = D10.;
parent = Common.ParameterEstimates.StdErr;

end;

define ChiSq;
parent = Stat.Phreg.ChiSq;

end;

define ProbChiSq;
parent = Stat.Phreg.ProbChiSq;

end;

define HazardRatio;
header = "#Hazard#Ratio#";
glue = 2;
format = 8.3;

end;

define HRLowerCL;
glue = 2;
format = 8.3;
print_headers = OFF;

end;

define HRUpperCL;
format = 8.3;
print_headers = OFF;

end;

define Label;
header = "Variable Label";

end;

col_space_max = 4;
col_space_min = 1;
required_space = NRows;

end;

It contains header, format, spacing and other information for each column in the table. Most of this need not
concern us now. The template contains this column statement, which lists the columns of the table.

column Variable DF Estimate StdErr ChiSq ProbChiSq HazardRatio HRLowerCL
HRUpperCL Label;

Since we will usually have a label that adequately names each parameter, we do not need the variable column.
We also do not need the hazard information. If we move the label to the front of the list and drop the variable
column and the hazard columns, we get this.

column Label DF Estimate StdErr ChiSq ProbChiSq;

290

We use the edit statement to edit the template. As long as we are changing the template, we can also
modify some headers. We specify the new column statement and the new headers. We can also mod-
ify the Summary table to use the vocabulary of choice models instead of survival analysis models. So the
Stat.Phreg.CensoredSummary is also edited. The code is grabbed from the PROC TEMPLATE step
with the source statement. The overall header “Summary of the Number of Event and Censored Values” is
changed to “Summary of Subjects, Sets, and Chosen and Unchosen Alternatives”, “Total” is changed to “Num-
ber of Alternatives”, “Event” is changed to “Chosen Alternatives”, “Censored” is changed to “Not Chosen”, and
“Percent Censored” is dropped. Finally Style=RowHeader was specified on the label column. This sets the
color, font, and general style for HTML output. The RowHeader style is typically used on first columns that
provide names or labels for the rows. Here is the code that the %phchoice(on) macro runs.

proc template;
edit stat.phreg.ParameterEstimates;

column Label DF Estimate StdErr ChiSq ProbChiSq;
header h1;

define h1;
text "Multinomial Logit Parameter Estimates";
space = 1;
spill_margin;
end;

define Label;
header = " " style = RowHeader;
end;

end;

edit Stat.Phreg.CensoredSummary;
notes "Number of Events and Censored";
dynamic ndec;
column Stratum GenericStrVar Total Event Censored;
header h1;
define h1;

text "Summary of Subjects, Sets, and Chosen and Unchosen Alternatives";
space = 1;
spill_margin;
first_panel;

end;

define Stratum;
header = "Stratum";
translate _val_=.A into "Total";
format = 5.0;
style = RowHeader;
id;

end;

define GenericStrVar;
generic;

end;

define Total;
header = "#Number of#Alternatives";
format_ndec = ndec;
format_width = 8;

end;

define Event;
header = "#Chosen#Alternatives";
format_ndec = ndec;
format_width = 8;

end;

291

define Censored;
header = "Not Chosen";
format_ndec = ndec;
format_width = 8;

end;

col_space_max = 4;
col_space_min = 1;
control = control_var;
use_name;
end;

run;

Here is the code that %phchoice(off) runs.

* Delete edited templates, restore original templates;
proc template;

delete Stat.Phreg.ParameterEstimates;
delete Stat.Phreg.CensoredSummary;
run;

Our editing of the multinomial logit parameter estimates table assumes that each independent variable has a
label. If you are coding with PROC TRANSREG, this will be true of all variables created by class expansions.
You may have to provide labels for identity and other variables. Alternatively, if you want variable names
to appear in the table, you can do that as follows. This may be useful when you are not coding with PROC
TRANSREG.

%phchoice(on, Variable DF Estimate StdErr ChiSq ProbChiSq Label)

The optional second argument provides a list of the column names to print. The available columns
are: Variable DF Estimate StdErr ChiSq ProbChiSq HazardRatio HRLowerCL HRUp-
perCL Label. (HRLowerCL and HRUpperCL are confidence limits on the hazard ratio.) For very detailed
customizations, you may have to run PROC TEMPLATE directly.

%PHCHOICE Macro Options
The %PHCHOICE macro has two positional parameters, onoff and column. For positional parameters, just a
value is specified (unlike keyword parameters which have the form KEYWORD=value).

onoff
ON turns on choice model customization.
OFF turns off the choice model customization and returns to the default PROC PHREG templates.
EXPB turns on choice model customization and adds the hazard ratio to the output.
Upper/lower case does not matter.

column
contains an optional column list for more extensive customizations.

292

Concluding Remarks
This report has illustrated how to design a choice experiment; prepare the questionnaire; input, process, and code
the design; perform the analysis; and interpret the results. All examples were artificial. We would welcome
any real data sets that we could use in future examples. This report has already been revised many times, and
future revisions are likely. If you have comments or suggestions for future revisions write Warren F. Kuhfeld,
(saswfk@wnt.sas.com) at SAS Institute Inc. Please direct questions to the technical support division.

For more information on discrete choice, see Carson et. al. (1994) and the papers they reference. For information
on designing experiments for discrete choice, see Lazari and Anderson (1994), and Kuhfeld, Tobias, and Garratt
(1994).

293

References
Carson, R.T., Louviere, J.J, Anderson, D.A., Arabie, P., Bunch, D., Hensher, D.A., Johnson, R.M., Kuhfeld,

W.F., Steinberg, D., Swait, J., Timmermans, H., and Wiley, J.B. (1994).“Experimental Analysis of Choice,”
Marketing Letters, 5(4), 351�368.

Cook, R. Dennis and Christopher J. Nachtsheim (1980), “A Comparison of Algorithms for Constructing Exact
D-optimal Designs,” Technometrics, 22 (August), 315�24.

Federov, Valery V. (1972), Theory of Optimal Experiments, translated and edited by W.J. Studden and E.M.
Klimko, New York: Academic Press.

Huber, J., and Zwerina, K. (1996), “The Importance of Utility Balance in Efficient Choice Designs,” Journal of
Marketing Research, 33, 307�317.

Kuhfeld, W.F., Tobias, R.D., and Garratt, M. (1994), “Efficient Experimental Design with Marketing Research
Applications,” Journal of Marketing Research, 31, 545�557.

Lazari, A.G. and Anderson, D.A. (1994), “Designs of Discrete Choice Set Experiments for Estimating Both
Attribute and Availability Cross Effects,” Journal of Marketing Research, 31, 375�383.

Louviere, J.J. (1991) “Consumer Choice Models and the Design and Analysis of Choice Experiments,” Tutorial
presented to the American Marketing Association Advanced Research Techniques Forum, Beaver Creek,
Colorado.

Louviere, J.J. and Woodworth, G (1983), “Design and Analysis of Simulated Consumer Choice of Allocation Ex-
periments: A Method Based on Aggregate Data,” Journal of Marketing Research, 20 (November), 350�67.

Manski, C.F., and McFadden, D. (1981) Structural Analysis of Discrete Data with Econometric Applications.
Cambridge: MIT Press.

SAS and SAS/STAT are registered trademarks or trademarks of SAS Institute Inc in the USA and other countries.
 indicates USA registration.

294

Multinomial Logit Models�

Ying So and Warren F. Kuhfeld

SAS Institute Inc, Cary, NC

ABSTRACT Multinomial logit models are used to model relationships between a polytomous response variable
and a set of regressor variables. The term “multinomial logit model” includes, in a broad sense, a variety of
models. The cumulative logit model is used when the response of an individual unit is restricted to one of a finite
number of ordinal values. Generalized logit and conditional logit models are used to model consumer choices.
This article focuses on the statistical techniques for analyzing discrete choice data and discusses fitting these
models using SAS/STAT R software.

Introduction Multinomial logit models are used to model relationships between a polytomous response variable
and a set of regressor variables. These polytomous response models can be classified into two distinct types,
depending on whether the response variable has an ordered or unordered structure.

In an ordered model, the response Y of an individual unit is restricted to one of m ordered values. For example,
the severity of a medical condition may be: none, mild, and severe. The cumulative logit model assumes that the
ordinal nature of the observed response is due to methodological limitations in collecting the data that results in
lumping together values of an otherwise continuous response variable (McKelvey and Zavoina 1975). Suppose
Y takes values y1; y2; : : :; ym on some scale, where y1 < y2 < : : : < ym. It is assumed that the observable
variable is a categorized version of a continuous latent variable U such that

Y = yi , �i�1 < U � �i; i = 1; : : :;m

where �1 = �0 < �1 < : : : < �m = 1. It is further assumed that the latent variable U is determined by the
explanatory variable vector x in the linear form U = �� 0x + �; where � is a vector of regression coefficients
and � is a random variable with a distribution function F . It follows that

PrfY � yijxg = F (�i + �0x)

If F is the logistic distribution function, the cumulative model is also known as the proportional odds model.
You can use PROC LOGISTIC or PROC PROBIT directly to fit the cumulative logit models. Although the
cumulative model is the most widely used model for ordinal response data, other useful models include the
adjacent-categories logit model and the continuation-ratio model (Agresti 1990).

In an unordered model, the polytomous response variable does not have an ordered structure. Two classes of
models, the generalized logit models and the conditional logit models, can be used with nominal response data.
The generalized logit model consists of a combination of several binary logits estimated simultaneously. For
example, the response variable of interest is the occurrence or nonoccurrence of infection after a Caesarean
section with two types of (I,II) infection. Two binary logits are considered: one for type I infection versus no
infection and the other for type II infection versus no infection. The conditional logit model has been used in
biomedical research to estimate relative risks in matched case-control studies. The nuisance parameters that
correspond to the matched sets in an unconditional analysis are eliminated by using a conditional likelihood
that contains only the relative risk parameters (Breslow and Days 1980). The conditional logit model was also
introduced by McFadden (1973) in the context of econometrics.

In studying consumer behavior, an individual is presented with a set of alternatives and asked to choose the most
preferred alternative. Both the generalized logit and conditional logit models are used in the analysis of discrete
choice data. In a conditional logit model, a choice among alternatives is treated as a function of the characteristics
of the alternatives, whereas in a generalized logit model, the choice is a function of the characteristics of the
individual making the choice. In many situations, a mixed model that includes both the characteristics of the
alternatives and the individual is needed for investigating consumer choice.

�This paper was presented at SUGI 20 by Ying So and can also be found in the SUGI 20 proceedings.

295

Consider an example of travel demand. People are asked to choose between travel by auto, plane or public
transit (bus or train). The following SAS R statements create the data set TRAVEL. The variables AUTOTIME,
PLANTIME, and TRANTIME represent the total travel time required to get to a destination by using auto, plane,
or transit, respectively. The variable AGE represents the age of the individual being surveyed, and the variable
CHOSEN contains the individual’s choice of travel mode.

data travel;
input AutoTime PlanTime TranTime Age Chosen $;
datalines;

10.0 4.5 10.5 32 Plane
5.5 4.0 7.5 13 Auto
4.5 6.0 5.5 41 Transit
3.5 2.0 5.0 41 Transit
1.5 4.5 4.0 47 Auto

10.5 3.0 10.5 24 Plane
7.0 3.0 9.0 27 Auto
9.0 3.5 9.0 21 Plane
4.0 5.0 5.5 23 Auto

22.0 4.5 22.5 30 Plane
7.5 5.5 10.0 58 Plane

11.5 3.5 11.5 36 Transit
3.5 4.5 4.5 43 Auto

12.0 3.0 11.0 33 Plane
18.0 5.5 20.0 30 Plane
23.0 5.5 21.5 28 Plane
4.0 3.0 4.5 44 Plane
5.0 2.5 7.0 37 Transit
3.5 2.0 7.0 45 Auto

12.5 3.5 15.5 35 Plane
1.5 4.0 2.0 22 Auto

;

In this example, AUTOTIME, PLANTIME, and TRANTIME are alternative-specific variables, whereas AGE is
a characteristic of the individual. You use a generalized logit model to investigate the relationship between the
choice of transportation and AGE, and you use a conditional logit model to investigate how travel time affects
the choice. To study how the choice depends on both the travel time and age of the individual, you need to use a
mixed model that incorporates both types of variables.

A survey of the literature reveals a confusion in the terminology for the nominal response models. The term
“multinomial logit model” is often used to describe the generalized logit model. The mixed logit is sometimes
referred to as the multinomial logit model in which the generalized logit and the conditional logit models are
special cases.

The following sections describe discrete choice models, illustrate how to use SAS/STAT software to fit these
models, and discuss cross-alternative effects.

Modeling Discrete Choice Data Consider an individual choosing among m alternatives in a choice set. Let � jk

denote the probability that individual j chooses alternative k, letX j represent the characteristics of individual j,
and let Zjk be the characteristics of the kth alternative for individual j. For example,X j may be an age and each
Zjk a travel time.

The generalized logit model focuses on the individual as the unit of analysis and uses individual characteristics
as explanatory variables. The explanatory variables, being characteristics of an individual, are constant over the
alternatives. For example, for each of the m travel modes,X j = (1 age)0, and for the first subject,X1 = (1 32)0.
The probability that individual j chooses alternative k is

�jk =
exp(�0kXj)Pm
l=1 exp(�

0
lXj)

=
1Pm

l=1 exp[(�l � �k)
0Xj)]

�
1
; : : :;�m are m vectors of unknown regression parameters (each of which is different, even though X j is

296

constant across alternatives). Since
Pm

k=1�jk = 1, the m sets of parameters are not unique. By setting the last
set of coefficients to null (that is, �m = 0), the coefficients �k represent the effects of the X variables on the
probability of choosing the kth alternative over the last alternative. In fitting such a model, you estimate m � 1

sets of regression coefficients.

In the conditional logit model, the explanatory variables Z assume different values for each alternative and the
impact of a unit of Z is assumed to be constant across alternatives. For example, for each of the m travel modes,
Zjk = (time)0, and for the first subject, Z11 = (10)0, Z12 = (4:5)0, and Z13 = (10:5)0. The probability that the
individual j chooses alternative k is

�jk =
exp(�0Zjk)Pm
l=1 exp(�

0
Zjl)

=
1Pm

l=1 exp[�
0(Zjl � Zjk)]

� is a single vector of regression coefficients. The impact of a variable on the choice probabilities derives from
the difference of its values across the alternatives.

For the mixed logit model that includes both characteristics of the individual and the alternatives, the choice
probabilities are

�jk =
exp(�0kXj + �

0
Zjk)Pm

l=1 exp(�
0
lXj + �0Zjl)

�
1
; : : :;�m�1 and �m � 0 are the alternative-specific coefficients, and � is the set of global coefficients.

Fitting Discrete Choice Models The CATMOD procedure in SAS/STAT software directly fits the generalized
logit model. SAS/STAT software does not yet have a procedure that is specially designed to fit the conditional or
mixed logit models. However, with some preliminary data processing, you can use the PHREG procedure to fit
these models.

The PHREG procedure fits the Cox proportional hazards model to survival data (refer to SAS Technical Report
P-229). The partial likelihood of Breslow has the same form as the likelihood in a conditional logit model.

Let zl denote the vector of explanatory variables for individual l. Let t 1 < t2 < : : : < tk denote k distinct
ordered event times. Let di denote the number of failures at ti. Let si be the sum of the vectors zl for those
individuals that fail at ti, and let Ri denote the set of indices for those who are at risk just before t i.

The Breslow (partial) likelihood is

LB(�) =

kY
i=1

exp(�0si)

[
P

l2Ri

exp(�0zl)]di

In a stratified analysis, the partial likelihood is the product of the partial likelihood for each individual stratum.
For example, in a study of the time to first infection from a surgery, the variables of a patient consist of TIME
(time from surgery to the first infection), STATUS (an indicator of whether the observation time is censored,
with value 2 identifying a censored time), Z1 and Z2 (explanatory variables thought to be related to the time to
infection), and GRP (a variable identifying the stratum to which the observation belongs). The specification in
PROC PHREG for fitting the Cox model using the Breslow likelihood is as follows:

proc phreg;
model time*status(2) = z1 z2 / ties=breslow;
strata grp;
run;

To cast the likelihood of the conditional logit model in the form of the Breslow likelihood, consider m artificial
observed times for each individual who chooses one of m alternatives. The kth alternative is chosen at time 1; the
choices of all other alternatives (second choice, third choice, ...) are not observed and would have been chosen
at some later time. So a choice variable is coded with an observed time value of 1 for the chosen alternative and
a larger value, 2, for all unchosen (unobserved or censored alternatives). For each individual, there is exactly

297

one event time (1) and m � 1 nonevent times, and the risk set just prior to this event time consists of all the m
alternatives. For individual j with alternative-specific characteristics Z jl, the Breslow likelihood is then

LB(�) =
exp(�0Zjk)Pm
l=1 exp(�

0
Zjl)

This is precisely the probability that individual j chooses alternative k in a conditional logit model. By stratifying
on individuals, you get the likelihood of the conditional logit model. Note that the observed time values of 1 and
2 are chosen for convenience; however, the censored times have to be larger than the event time to form the
correct risk set.

Before you invoke PROC PHREG to fit the conditional logit, you must arrange your data in such a way that there
is a survival time for each individual-alternative. In the example of travel demand, let SUBJECT identify the
individuals, let TRAVTIME represent the travel time for each mode of transportation, and let CHOICE have a
value 1 if the alternative is chosen and 2 otherwise. The CHOICE variable is used as the artificial time variable
as well as a censoring variable in PROC PHREG. The following SAS statements reshape the data set TRAVEL
into data set CHOICE and display the first nine observations:

data choice(keep=subject mode travtime choice);
array times[3] autotime plantime trantime;
array allmodes[3] $ _temporary_ (’Auto’ ’Plane’ ’Transit’);
set travel;
Subject = _n_;
do i = 1 to 3;

Mode = allmodes[i];
TravTime = times[i];
Choice = 2 - (chosen eq mode);
output;

end;
run;

proc print data=choice(obs=9);
run;

Trav
Obs Subject Mode Time Choice

1 1 Auto 10.0 2
2 1 Plane 4.5 1
3 1 Transit 10.5 2
4 2 Auto 5.5 1
5 2 Plane 4.0 2
6 2 Transit 7.5 2
7 3 Auto 4.5 2
8 3 Plane 6.0 2
9 3 Transit 5.5 1

Notice that each observation in TRAVEL corresponds to a block of three observations in CHOICE, exactly one
of which is chosen.

The following SAS statements invoke PROC PHREG to fit the conditional logit model. The Breslow likelihood
is requested by specifying TIES=BRESLOW. CHOICE is the artificial time variable, and a value of 2 identifies
censored times. SUBJECT is used as a stratification variable.

proc phreg data=choice;
model choice*choice(2) = travtime / ties=breslow;
strata subject;
title ’Conditional Logit Model Using PHREG’;
run;

298

Conditional Logit Model Using PHREG

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

TravTime 1 -0.26549 0.10215 6.7551 0.0093 0.767

To study the relationship between the choice of transportation and the age of people making the choice, the
analysis is based on the generalized logit model. You can use PROC CATMOD directly to fit the generalized
logit model (refer to SAS/STAT User’s Guide, Vol. 1). In the following invocation of PROC CATMOD, CHOSEN
is the response variable and AGE is the explanatory variable:

proc catmod data=travel;
direct age;
model chosen=age;
title ’Multinomial Logit Model Using Catmod’;
run;

Response Profiles

Response Chosen

1 Auto
2 Plane
3 Transit

Analysis of Maximum Likelihood Estimates

Standard Chi-
Effect Parameter Estimate Error Square Pr > ChiSq

Intercept 1 3.0449 2.4268 1.57 0.2096

2 2.7212 2.2929 1.41 0.2353
Age 3 -0.0710 0.0652 1.19 0.2762

4 -0.0500 0.0596 0.70 0.4013

Note that there are two intercept coefficients and two slope coefficients for AGE. The first INTERCEPT and the
first AGE coefficients correspond to the effect on the probability of choosing auto over transit, and the second
intercept and second age coefficients correspond to the effect of choosing plane over transit.

LetXj be a (p+1)-vector representing the characteristics of individual j. The generalized logit model can be cast
in the framework of a conditional model by defining the global parameter vector � and the alternative-specific
regressor variables Zjk as follows:

� =

2
6664

�
1

�
2

...
�m�1

3
7775 Zj1 =

2
6664
Xj

0
...
0

3
7775 Zj2 =

2
666664

0

Xj

0
...
0

3
777775 : : : Zj;m�1 =

2
6664

0
...
0

Xj

3
7775 Zjm =

2
64

0
...
0

3
75

where the 0 is a (p+1)-vector of zeros. The probability that individual j chooses alternative k for the generalized

299

logit model is put in the form that corresponds to a conditional logit model as follows:

�jk =
exp(�0kXj)Pm
l=1 exp(�

0
lXj)

=
exp(�0Zjk)Pm
l=1 exp(�

0
Zjl)

Here, the vector Xj representing the characteristics of individual j includes the element 1 for the intercept
parameter (provided that the intercept parameters are to be included in the model).

By casting the generalized logit model into a conditional logit model, you can then use PROC PHREG to analyze
the generalized logit model. In the example of travel demand, the alternative-specific variables AUTO, PLANE,
AGEAUTO, and AGEPLANE are created from the individual characteristic variable AGE. The following SAS
statements reshape the data set TRAVEL into data set CHOICE2 and display the first nine observations:

data choice2;
array times[3] autotime plantime trantime;
array allmodes[3] $ _temporary_ (’Auto’ ’Plane’ ’Transit’);
set travel;
Subject = _n_;
do i = 1 to 3;

Mode = allmodes[i];
TravTime = times[i];
Choice = 2 - (chosen eq mode);
Auto = (i eq 1);
Plane = (i eq 2);
AgeAuto = auto * age;
AgePlane = plane * age;
output;

end;
keep subject mode travtime choice auto plane ageauto ageplane;
run;

proc print data=choice2(obs=9);
run;

Trav Age Age
Obs Subject Mode Time Choice Auto Plane Auto Plane

1 1 Auto 10.0 2 1 0 32 0
2 1 Plane 4.5 1 0 1 0 32
3 1 Transit 10.5 2 0 0 0 0
4 2 Auto 5.5 1 1 0 13 0
5 2 Plane 4.0 2 0 1 0 13
6 2 Transit 7.5 2 0 0 0 0
7 3 Auto 4.5 2 1 0 41 0
8 3 Plane 6.0 2 0 1 0 41
9 3 Transit 5.5 1 0 0 0 0

The following SAS statements invoke PROC PHREG to fit the generalized logit model:

proc phreg data=choice2;
model choice*choice(2) = auto plane ageauto ageplane / ties=breslow;
strata subject;
title ’Generalized Logit Model Using PHREG’;
run;

300

Mixed Logit Model Using PHREG

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 3.04494 2.42682 1.5743 0.2096 21.009
Plane 1 2.72121 2.29289 1.4085 0.2353 15.199
AgeAuto 1 -0.07097 0.06517 1.1859 0.2762 0.931
AgePlane 1 -0.05000 0.05958 0.7045 0.4013 0.951

By transforming individual characteristics into alternative-specific variables, the mixed logit model can be ana-
lyzed as a conditional logit model.

Analyzing the travel demand data for the effects of both travel time and age of individual requires the same data
set as the generalized logit model, only now the TRAVTIME variable will be used as well. The following SAS
statements use PROC PHREG to fit the mixed logit model:

proc phreg data=choice2;
model choice*choice(2) = auto plane ageauto ageplane travtime / ties=breslow;
strata subject;
title ’Mixed Logit Model Using PHREG’;
run;

Mixed Logit Model Using PHREG

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 2.50069 2.39585 1.0894 0.2966 12.191
Plane 1 -2.77912 3.52929 0.6201 0.4310 0.062
AgeAuto 1 -0.07826 0.06332 1.5274 0.2165 0.925
AgePlane 1 0.01695 0.07439 0.0519 0.8198 1.017
TravTime 1 -0.60845 0.27126 5.0315 0.0249 0.544

A special case of the mixed logit model is the conditional logit model with alternative-specific constants. Each
alternative in the model can be represented by its own intercept, which captures the unmeasured desirability of
the alternative.

proc phreg data=choice2;
model choice*choice(2) = auto plane travtime / ties=breslow;
strata subject;
title ’Conditional Logit Model with Alternative Specific Constants’;
run;

301

Conditional Logit Model with Alternative Specific Constants

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 -0.11966 0.70820 0.0285 0.8658 0.887
Plane 1 -1.63145 1.24251 1.7241 0.1892 0.196
TravTime 1 -0.48665 0.20725 5.5139 0.0189 0.615

With transit as the reference mode, the intercept for auto, which is negative, may reflect the inconvenience of
having to drive over travelling by bus/train, and the intercept for plane may reflect the high expense of traveling
by plane over bus/train.

Cross-Alternative Effects Discrete choice models are often derived from the principle of maximum random
utility. It is assumed that an unobserved utility Vk is associated with the kth alternative, and the response function
Y is determined by

Y = k , Vk = maxfVl; 1 � l � mg

Both the generalized logit and the conditional logit models are based on the assumption that V 1; : : :; Vm are
independently distributed and each follows an extreme maxima value distribution (Hoffman and Duncan, 1988).
An important property of such models is Independence from Irrelevant Alternatives (IIA); that is, the ratio of
the choice probabilities for any two alternatives for a particular observation is not influenced systematically by
any other alternatives. IIA can be tested by fitting a model that contains all the cross-alternative effects and
examining the significance of these effects. The cross-alternative effects pick up a variety of IIA violations and
other sources of error in the model. (See pages 175, 180, 187, and 305 for other discussions of IIA.)

In the example of travel demand, there may be separate effects for the three travel modes and travel times. In
addition, there may be cross-alternative effects for travel times. Not all the effects are estimable, only two of
the three intercepts and three of the six cross-alternative effects can be estimated. The following SAS statements
create the design variables for all the cross-alternative effects and display the first nine observations:

* Number of alternatives in each choice set;
%let m = 3;

data choice3;
drop i j k autotime plantime trantime;

* Values of the variable CHOSEN;
array allmodes[&m] $

temporary (’Auto’ ’Plane’ ’Transit’);

* Travel times for the alternatives;
array times[&m] autotime plantime trantime;

* New variables that will contain the design:;
array inters[&m]

Auto /*intercept for auto */
Plane /*intercept for plane */
Transit; /*intercept for transit */

302

array cross[%eval(&m * &m)]
TimeAuto /*time of auto alternative */
PlanAuto /*cross effect of plane on auto */
TranAuto /*cross effect of transit on auto */
AutoPlan /*cross effect of auto on plane */
TimePlan /*time of plane alternative */
TranPlan /*cross effect of transit on plane*/
AutoTran /*cross effect of auto on transit */
PlanTran /*cross effect of plane on transit*/
TimeTran; /*time of transit alternative */

set travel;

subject = _n_;

* Create &m observations for each choice set;
do i = 1 to &m;

Mode = allmodes[i]; /* this alternative */
Travtime = times[i]; /* travel time */
Choice = 2 - (chosen eq mode);/* 1 - chosen */
do j = 1 to &m;

inters[j] = (i eq j); /* mode indicator */
do k = 1 to &m;

* (j=k) - time, otherwise, cross effect;
cross[&m*(j-1)+k]=times[k]*inters[j];
end;

end;
output;
end;

run;

proc print data=choice3(obs=9) label;
var subject mode travtime choice auto plane transit

timeauto timeplan timetran autoplan autotran planauto
plantran tranauto tranplan;

run;

subject Mode Travtime Choice Auto Plane Transit

1 Auto 10.0 2 1 0 0
1 Plane 4.5 1 0 1 0
1 Transit 10.5 2 0 0 1
2 Auto 5.5 1 1 0 0
2 Plane 4.0 2 0 1 0
2 Transit 7.5 2 0 0 1
3 Auto 4.5 2 1 0 0
3 Plane 6.0 2 0 1 0
3 Transit 5.5 1 0 0 1

Time Time Time Auto Auto Plan Plan Tran Tran
Auto Plan Tran Plan Tran Auto Tran Auto Plan

10.0 0.0 0.0 0.0 0.0 4.5 0.0 10.5 0.0
0.0 4.5 0.0 10.0 0.0 0.0 0.0 0.0 10.5
0.0 0.0 10.5 0.0 10.0 0.0 4.5 0.0 0.0
5.5 0.0 0.0 0.0 0.0 4.0 0.0 7.5 0.0
0.0 4.0 0.0 5.5 0.0 0.0 0.0 0.0 7.5
0.0 0.0 7.5 0.0 5.5 0.0 4.0 0.0 0.0
4.5 0.0 0.0 0.0 0.0 6.0 0.0 5.5 0.0
0.0 6.0 0.0 4.5 0.0 0.0 0.0 0.0 5.5
0.0 0.0 5.5 0.0 4.5 0.0 6.0 0.0 0.0

303

PROC PHREG allows you to specify TEST statements for testing linear hypotheses of the parameters. The
test is a Wald test, which is based on the asymptotic normality of the parameter estimators. The following
SAS statements invoke PROC PHREG to fit the so called “Mother Logit” model that includes all the cross-
alternative effects. The TEST statement, with label IIA, specifies the null hypothesis that cross-alternative effects
AUTOPLAN, PLANTRAN, and TRANAUTO are 0. Since only three cross-alternative effects are estimable and
these are the first cross-alternative effects specified in the model, they account for all the cross-alternative effects
in the model.

proc phreg data=choice3;
model choice*choice(2) = auto plane transit timeauto timeplan

timetran autoplan plantran tranauto planauto tranplan
autotran / ties=breslow;

IIA: test autoplan,plantran,tranauto;
strata subject;
title ’Mother Logit Model’;
run;

304

Mother Logit Model

The PHREG Procedure

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 46.142 24.781
AIC 46.142 40.781
SBC 46.142 49.137

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 21.3607 8 0.0062
Score 15.4059 8 0.0517
Wald 6.2404 8 0.6203

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 -0.73812 3.05933 0.0582 0.8093 0.478
Plane 1 -3.62435 3.48049 1.0844 0.2977 0.027
Transit 0 0
TimeAuto 1 -2.23433 1.89921 1.3840 0.2394 0.107
TimePlan 1 -0.10112 0.68621 0.0217 0.8829 0.904
TimeTran 1 0.09785 0.70096 0.0195 0.8890 1.103
AutoPlan 1 0.44495 0.68616 0.4205 0.5167 1.560
PlanTran 1 -0.53234 0.63481 0.7032 0.4017 0.587
TranAuto 1 1.66295 1.51193 1.2097 0.2714 5.275
PlanAuto 0 0
TranPlan 0 0
AutoTran 0 0

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq

IIA 1.6526 3 0.6475

The �2 statistic for the Wald test is 1:6526 with 3 degrees of freedom, indicating that the cross-alternative effects
are not statistically significant (p = :6475). A generally more preferable way of testing the significance of
the cross-alternative effects is to compare the likelihood of the “Mother logit” model with the likelihood of the

305

reduced model with the cross- alternative effects removed. The following SAS statements invoke PROC PHREG
to fit the reduced model:

proc phreg data=choice3;
model choice*choice(2) = auto plane transit timeauto

timeplan timetran / ties=breslow;
strata subject;
title ’Reduced Model without Cross-Alternative Effects’;
run;

Reduced Model without Cross-Alternative Effects

The PHREG Procedure

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 46.142 27.153
AIC 46.142 37.153
SBC 46.142 42.376

Reduced Model without Cross-Alternative Effects

The PHREG Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 18.9886 5 0.0019
Score 14.4603 5 0.0129
Wald 7.3422 5 0.1964

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 1.71578 1.80467 0.9039 0.3417 5.561
Plane 1 -3.60073 3.30555 1.1866 0.2760 0.027
Transit 0 0
TimeAuto 1 -0.79543 0.36327 4.7946 0.0285 0.451
TimePlan 1 0.12162 0.58954 0.0426 0.8366 1.129
TimeTran 1 -0.42184 0.25733 2.6873 0.1012 0.656

The chi-squared statistic for the likelihood ratio test of IIA is (27:153�24:781) = 2:372, which is not statistically
significant (p = :4989) when compared to a �2 distribution with 3 degrees of freedom. This is consistent with
the previous result of the Wald test. (See pages 175, 180, 187, and 301 for other discussions of IIA.)

306

Final Comments For some discrete choice problems, the number of available alternatives is not the same for
each individual. For example, in a study of consumer brand choices of laundry detergents as prices change, data
are pooled from different locations, not all of which offer a brand that contains potash. The varying choice sets
across individuals can easily be accommodated in PROC PHREG. For individual j who chooses from a set of
mj alternatives, considermj artificial times in which the chosen alternative has an event time 1 and the unchosen
alternatives have a censored time of 2. The analysis is carried out in the same fashion as illustrated in the previous
section.

Unlike the example of travel demand in which data for each individual are provided, choice data are often given
in aggregate form, with choice frequencies indicating the repetition of each choice. One way of dealing with
aggregate data is to expand the data to the individual level and carry out the analysis as if you have nonaggregate
data. This approach is generally not recommended because it defeats the purpose of having a smaller aggregate
data set. PROC PHREG provides a FREQ statement that allows you to specify a variable that identifies the
frequency of occurrence of each observation. However, with the specification of a FREQ variable, the artificial
event time is no longer the only event time in a given stratum, but has ties of the given frequency. With proper
stratification, the Breslow likelihood is proportional to the likelihood of the conditional logit model. Thus PROC
PHREG can be used to obtain parameter estimates and hypothesis testing results for the choice models.

The TIES=DISCRETE option should not be used instead of the TIES=BRESLOW option. This is especially
detrimental with aggregate choice data because the likelihood that PROC PHREG is maximizing may no longer
be the same as the likelihood of the conditional logit model. TIES=DISCRETE corresponds to the discrete
logistic model for genuinely discrete time scale, which is also suitable for the analysis of case-control studies
when there is more than one case in a matched set (Gail, Lubin, and Rubinstein, 1981). For nonaggregate choice
data, all TIES= options give the same results; however, the resources required for the computation are not the
same, with TIES=BRESLOW being the most efficient.

Once you have a basic understanding of how PROC PHREG works, you can use it to fit a variety of models
for the discrete choice data. The major involvement in such a task lies in reorganizing the data to create the
observations necessary to form the correct risk sets and the appropriate design variables. There are many options
in PROC PHREG that can also be useful in the analysis of discrete choice data. For example, the OFFSET=
option allows you to restrict the coefficient of an explanatory variable to the value of 1; the SELECTION= option
allows you to specify one of four methods for selecting variables into the model; the OUTEST= option allows
you to specify the name of the SAS data set that contains the parameter estimates, based on which you can easily
compute the predicted probabilities of the alternatives.

This article deals with estimating parameters of discrete choice models. There is active research in the field of
marketing research to use design of experiments to study consumer choice behavior. If you are interested in this
area, refer to Carson et al. (1994), Kuhfeld et al. (1994), and Lazari et al. (1994).

References

Agresti, A. (1990) Categorical Data Analysis. New York: John Wiley & Sons.

Breslow, N. and Day, N.E. (1980), Statistical Methods in Cancer Research, Vol. II: The Design and Analysis of
Cohort Studies, Lyon: IARC.

Carson, R.T.; Louviere, J.J; Anderson, D.A.; Arabie, P.; Bunch, D.; Hensher, D.A.; Johnson, R.M.; Kuhfeld,
W.F.; Steinberg, D.; Swait, J.; Timmermans, H.; and Wiley, J.B. (1994). “Experimental Analysis of Choice,”
Marketing Letters, 5(4), 351-368.

Gail, M.H., Lubin, J.H., and Rubinstein, L.V. (1981), “Likelihood calculations for matched case-control studies
and survival studies with tied death times,” Biometrika, 68, 703-707.

Hoffman, S.D. and Duncan, G.J. (1988), “Multinomial and conditional logit discrete-choice models in Demog-
raphy,” Demography, 25 (3), 415-427.

Kuhfeld, W.F., Tobias, R.D., and Garratt, M. (1994), “Efficient Experimental Design with Marketing Research
Applications,” Journal of Marketing Research, 31, 545-557.

307

Lazari, A.G. and Anderson, D.A. (1994), “Designs of Discrete Choice Set Experiments for Estimating Both
Attribute and Availability Cross Effects,” Journal of Marketing Research, 31, 375-383.

McFadden, D. (1973), “Conditional logit analysis of qualitative choice behavior,” in P. Zarembka (Ed.) Frontiers
in Econometrics, New York: Academic Press, Inc.

McKelvey, R.D. and Zavoina, W. (1975), “A statistical model for the analysis of ordinal level dependent vari-
ables,” Journal of Mathematical Sociology, 4, 103-120.

SAS Institute Inc. (1989), SAS/STAT User’s Guide, Vol. 1, Version 6, Fourth Edition, Cary: NC: SAS Institute
Inc.

SAS Institute Inc. (1992), SAS Technical Report P-229. SAS/STAT Software: Changes and Enhancements,
Release 6.07, Cary, NC: SAS Institute Inc.

SAS and SAS/STAT are trademarks or registered trademarks of SAS Institute Inc in the USA and other countries.
 indicates USA registration.

Index

@@ 75
A-efficiency 69
Age, variable 215-216
aggregate data 166-168 181 210 231 306
aliased 68
aliasing structure 197
allocation study 225
alt=, defined 284
alt= 284
alternative-specific effects 136-137 164 172 176 180

188 205 208 295-300
arrays 82 92 101-105 120-121 149 159-161 168 181

200 230 246 251 297-301
artificial data 66 161 200
asymmetry 143-144 187
augment= 255
augmenting an existing design 254
autocall macros 261
availability cross effects 187-190 195 211
balance 68-69 84 149 158 200 221-223
%BALEVAL macro 221
Best, variable 192
bestcov=, defined 279
bestout=, defined 279
bestout= 280
beta=, defined 279
beta= 240 270 275-276
big designs 143 250
big, how big is too big? 108
big=, defined 263
big= 109 190 263-265
binary coding 97 125 133 163 170
Block, variable 120 123 225 234
blocking 225
blocks 119 158
blocks, statement 119 158
blocks=, defined 285
blocks= 285
Brand, variable 94-97 170 174-175 202 206-208 216

230-234 277 282-286
Breslow likelihood 186
bundles of attributes 239
c = 2 - (i eq choice) 77
c, variable 77-78 96 101 104 124 174-175 206 210

233 287
c*c(2) 78 98
c*c(3) 78
c=1 75
c=2 75
cand=, defined 263
candidate set 90 108-112 119 149-150 158 188 191

250 254-255
candidate set size heuristics 109
CensoredSummary 129
check the data entry 79
Chi-Square statistic 80
choice probabilities 82
Choice, variable 77
%CHOICEFF macro 240 243-248
%CHOICEFF macro documentation 270-281
%CHOICEFF macro, alternative swapping 243 248
%CHOICEFF macro, set swapping 246-248
Choose, variable 105
chosen alternative 77
class, statement 91 109 195
class 96-97 125 128 133 137 146 149 163-164 170-

172 175 195 204-205 210 232 239-240 266
275 291

coded 281
coding down 145-146
coding

binary 97 125 163 170
effects 133
the choice model 97 125 129-131 134 137 163 170-

172 175 180-184 205 210 215 234
coding=, defined 263
Color, variable 282-283
column, defined 291
column, statement 289-290
confounded 68
constant alternative 84 90 102 168
converge=, defined 279
converge= 273
Count, variable 230-231 286
cov=, defined 279
cross effects 169 174-181 187-190 195 202 205 208-

213 217-218
customizing PHREG output 71 288-291
data entry 75-76 94 105 122 149 162 168 181 201 214

229 295
data entry, checking 79
data processing 106 134-136 149 202 229 246
data, generating artificial 161 200
data=, defined 279 286-287
data= 78 109 240 270 280 285-287
debug=, defined 284
D-efficiency 69 90 192-193 197
degree= 131
demographic information 214
Design, variable 242
design 97 125 163 170
design=, defined 285-286

308

design= 281-285
designs with many factors 250
detail 281
diminishing returns on iterations 192
drop=, defined 280
drop= 274
dropping variables 97 125
edit, statement 290
effects coding 133
effects 133 275
efficiency 69
Efficiency, variable 242
efficient design 90 109-112
estimate= 250
%EVALEFF macro 195
examine i, statement 117
examine i v, statement 196
exclude, ods statement 129 164 170-172 178

219
excluding combinations 190
existing design, improving 252
external attributes 214
extreme value type I distribution 187
factors 68
factors, statement 89 102 109 141 145 250 264
factors=, defined 263
factors= 85 108 145-146 190 264
Federov, modified 110-111 241
file, statement 92
fitting the choice model 77 80 98 127-131 134 138

164-166 170-172 178 182-184 211 219 234
237 296-300 303-305

five=, defined 267
five= 259
fixed choice sets 254
fixed=, defined 280
fixed= 280
flags=, defined 279
flags= 240 270 279-280
Form, variable 102 124 166
format, statement 136
formats 82 85 90-92 103 163 168 181 199 222 225
&forms, variable 102
fractional-factorial designs 68
freq, statement 166 182-184 211 234 237
Freq, variable 182

-FREQ- , variable 116 166 211
freq=, defined 287
freq= 287-288
frequency variable 166-168 181-184
full-factorial design 68 89-90 108 111-112 149-150

188
G-efficiency 69
generate, statement 109-111 119 158 253-255 264

generate=, defined 264
generic attributes 121
generic design 239
HRLowerCL 291
HRUpperCL 291
(i eq choice) 77
id, statement 97 125 164 170
identity 97 129 170-172 175 205 291
IIA 175 180 187 301-305
improving an existing design 252
Income, variable 215-216
independence 98
independence from irrelevant alternatives 175 180

187
Index, variable 242 274
information matrix 69
init=, defined 280
init= 272-274 280
init=chain 119 158
initdesign= 119 157-158 253
initial design 157 255
initvars=, defined 280
initvars= 272-274 280
input data 75
input, statement 75
input function 96
interact=, defined 264
interact= 151 190 265
interactions 111 136 151 166 188-189 194 198-200
intiter=, defined 280
intiter= 272
iter=, defined 264
iter= 109-112 192 264
kangaroos 112
keep=, defined 285
keep= 109 192 264
keep=n, defined 264
KEY data set 94 122 136 162 202 231 246 272 275-

277 282-283
key=, defined 285
key= 282-285
L36 149-150 254-256
label, variable 77-80 90-92 97 125 129-131 134 164

170-172 175-184 199 205 210 215 289-291
large data sets 166 181
levels 68
likelihood 71 74 77-78 98 140 166 174 184-186 294-

297 304-306
linesleft= 92
list, defined 270
local optima 150
Lodge, variable 122 125 137 162-164
lprefix= 97 125 164 170-172 205
macro variables 85 102

309

macro
%BALEVAL 221
%CHOICEFF 240 243-248 270-281
%EVALEFF 195
%MKTALLO 233 286-288
%MKTDES 85 108-113 140 145-152 189-193

221-225 239 243 246-267 270-277 282-283
%MKTDES10 259 267
%MKTDES6 257 266-267
%MKTMERGE 77 96 124 136 162 203 214 285-

286
%MKTROLL 95 122 136 162 202 231 246 272

275-277 281-285
%MKTRUNS 84 108 144 151 225 268-270
%PHCHOICE 71 288-291

macros
autocall 261

main effects 90 109-111 188-189 198
mautosource 261
max=, defined 270
max= 269
maxiter=, defined 280
maxiter= 241
memory, running with less 166
method=, defined 264
method= 119
method=m-federov 109-111 253
method=sequential 157-158
Micro, variable 202-205
%MKTALLO macro 233
%MKTALLO macro documentation 286-288
%MKTDES macro 85 108-113 140 145-152 189-193

221-225 239 243 246-259 270-277 282-283
%MKTDES macro documentation 261-267
%MKTDES10 macro 259
%MKTDES10 macro documentation 267
%MKTDES6 macro 257
%MKTDES6 macro documentation 266-267
%MKTMERGE macro 77 96 124 136 162 203 214
%MKTMERGE macro documentation 285-286
%MKTROLL macro 95 122 136 162 202 231 246 272

275-277
%MKTROLL macro documentation 281-285
%MKTRUNS macro 84 108 144 151 225
%MKTRUNS macro documentation 268-270
model comparisons 140 174 185 304-305
model estimate=(...), statement 141
model res=3, statement 109 142
model, statement 78 97-98 109 125-127 146 149-

151 163 170-172 175 195 248 265-266 270
278

model 145 248
model=, defined 278
model= 240 270 280

modified Federov algorithm 110-111 221 253-255
morevars=, defined 280
mother logit 174 180 187 211 303-304
multinomial logit 73 77-78 98 170-172 187 295
multiple choices 225
n, variable 242
n=, defined 264 280
n= 85 109 152 189-190 264 276
n=saturated 151
nalts=, defined 279 286-288
nalts= 272-273 279-280 285-287
nlev=, defined 264
nlev= 109 146 257-258 262 265
nocode 281
noexchange 119 158
None alternative 189 202 211-213 219-221
nor 97 125
norestoremissing 97 125 133 163 170
nosummary 100 129
notes 281
notruncate 237
noz 97 125
nozeroconstant 97 125 137 163 170
nsets=, defined 279 286
nsets= 240 270 285
nvals= 141-142
ODS 71 288
ods exclude, statement 129
ods exclude statement 129 164 170-172 178 219
ods output, statement 129 192 222
ods output statement 129 164 170-172 178 219
onoff, defined 291
options=, defined 264 281
options=eval 264
order=data 97 125 163
order=formatted 125
ordered 89 102
orthcan 281
orthogonal 68-69
orthogonal and balanced 84 149
orthogonal array 68
otherfac=, defined 264
otherfac= 250
otherint=, defined 265
otherint= 151
out=, defined 265 281 285-288
out= 97 109 125 163 170 265 281-287
out=allocs 288
outest= 78
Output Delivery System 71 288
output, statement 89-90 97 109-110 125 146 164

170
output, ods statement 129 164 170-172 178 219
outstat= 251

310

overnight searches 191
page, new 104
param=orthref 91 109
parameters 73 78-82 131-133 186-189 294-295 298

303 306
part-worth utility 73 81 132 161 166
Pattern, variable 283
permanent SAS data set 102
persist=run 222
%PHCHOICE macro 71
%PHCHOICE macro documentation 288-291
PHREG output, customizing 71 288-291
Place, variable 122-125 136-137 162-164
point=, variable 104
point= 77 91-92 120
pointrep= 148
Price, variable 94-97 100 123-125 129 137 162-164

170 174-175 188 202-208 234 277 282-283
286

PriceL, variable 131
Prob, variable 242
probability of choice 73-74 82-83 101-102 187 295-

298
PROC CATMOD 298
PROC FACTEX 109 140-142 145-148 250
PROC FORMAT 82 85 123 162 168 181 199 202 225
PROC FREQ 116 119 129 153 164 170-172 178 194

219 223 226
PROC GLM 197-198 251-252
PROC GPLOT 74 193
PROC IML 221-222 241
PROC LOGISTIC 294
PROC MEANS 101 222
PROC OPTEX 90 109-111 117-119 146 149 157-158

190-196 253-256 266
PROC OPTEX, common options explained 253-255
PROC PHREG 71 77 80 97-98 125-134 138 164-172

178 182-184 211 219 234 237 288 296-300
303-306

PROC PHREG, common options explained 77
PROC PLAN 89-92 102 119-120 158 190
PROC PLAN, common options explained 89 102
PROC PROBIT 294
PROC SCORE 101
PROC SORT 82 92 105 199 222 226 232 253
PROC SUMMARY 87 113 116 153 166 194 210 231

262
PROC TEMPLATE 71 288-291
PROC TRANSPOSE 103-105
PROC TRANSREG 97-98 125-137 163 170-172 175

178-184 205 210 215 234 248 291
procopts= 85
procopts=options, defined 265
procopts=seed= 190

proportional hazards 71 77 184 296
proportions, analyzing 237
pseudo-factors 142 146-147 256-259 263
pspline 131
put, statement 161
put function 96
quadratic price models 189
quantitative factor 100 129-131 166 250
questionnaire 92-93 102-105 120 158
random number seeds 85
randomization 91-92 102 119 158 199-200
read, statement 222
reference level 81 128 133 189
resolution 68
resolution III 109-112 141-142 253
resolution IV 111
resolution V 111
RowHeader 290
run=, defined 265
run= 239
Scene, variable 123-125 137 162-164
second choice 75-78
seed=, defined 281
seed= 85 109 146 193 240 270
separators= 172 175 205
sequential algorithm 119 157-158 195
set, statement 77 104
Set, variable 75 78-79 91 95-98 104-106 120 166-

168 174-175 182 242 285
set=, defined 281 285
setvars=, defined 286
setvars= 285
Shape, variable 282-283
Shelf, variable 202-205
shelf-talker 187 199-200 213
Side, variable 162-164
size design=min, statement 109 141 145
Size, variable 282-283
size=, defined 265
size= 112 146-147 152 262 265
size=min 265
source stat.phreg, statement 288
source, statement 290
statement
blocks 119 158
class 91 109 195
column 289-290
edit 290
examine i v 196
examine i 117
factors 89 102 109 141 145 250 264
file 92
format 136
freq 166 182

311

generate 109-111 119 158 253-255 264
id 97 125 164 170
input 75
model estimate=(...) 141
model res=3 109 142
model 78 97-98 109 125-127 146 149-151 163

170-172 175 195 248 265-266 270 278
ods exclude 129
ods output 129 192 222
output 89-90 97 109-110 125 146 164 170
put 161
read 222
set 77 104
size design=min 109 141 145
source stat.phreg 288
source 290
strata 78 98 168 182
use 222
ways 113 116
where 129 195 234

step=, defined 265
step=1 147
step=2 147
stmts=, defined 286
strata 78-79 98-100 166-168 181 184-186 296-297

306
strata, statement 78 98 168 182
Stratum, variable 129
structural zeros 81 133 140
structure= 119 158
Style=RowHeader 290
subdesign 188
Subj, variable 75 78-79 96-98 168-169 174-175 211
subject attributes 214
submat=, defined 281
submatrix rank 195
subsequent choice 75-78 124 168
summary table 78-79 100 184 213
survival analysis 71 77 296
tabled design 149 254

-temporary- 92
tests 281
three=, defined 267
three= 257
ties=breslow 71 77-78 98 184
time (computer), saving 166
&-trgind, variable 98 101 127-131 134 138 164-

166 170-172 176-178 182-184 211 219 234
237

-2 LOG L 80 174 184-186 305
two=, defined 267
two= 257-259
use, statement 222
variable label 77-80 90-92 97 125 129-131 134 164

170-172 175-184 199 205 210 215 289-291
variable name 291
variable
Age 215-216
Best 192
Block 120 123 225 234
Brand 94-97 170 174-175 202 206-208 216 230-

234 277 282-286
c 77-78 96 101 104 124 174-175 206 210 233 287
Choice 77
Choose 105
Color 282-283
Count 230-231 286
Design 242
Efficiency 242
Form 102 124 166
&forms 102
Freq 182

-FREQ- 116 166 211
Income 215-216
Index 242 274
Lodge 122 125 137 162-164
Micro 202-205
n 242
Pattern 283
Place 122-125 136-137 162-164
point= 104
Price 94-97 100 123-125 129 137 162-164 170

174-175 188 202-208 234 277 282-283 286
PriceL 131
Prob 242
Scene 123-125 137 162-164
Set 75 78-79 91 95-98 104-106 120 166-168 174-

175 182 242 285
Shape 282-283
Shelf 202-205
Side 162-164
Size 282-283
Stratum 129
Subj 75 78-79 96-98 168-169 174-175 211
&-trgind 98 101 127-131 134 138 164-166 170-

172 176-178 182-184 211 219 234 237
vars=, defined 288
vars= 287
very big designs 250
ways, statement 113 116
weight=, defined 281
where, statement 129 195 234
where=, defined 266
where= 190
With Covariates 80 140 174
zero= 129 133 180 205 277
zero=none 97 125 128-129 163 170-172 180

312

