
1 Modelling Strategies and Guidelines for GAITD Regres-

sion

Fitting a suitable GAITD regression model to a count response involves many decisions. The follow-
ing general tips and strategies are suggested. The skill set required for some steps are much higher
than others.

1.1 Background

To start, it is assumed that the reader is familiar with the following background material.

(i) The notation and basic GAITD regression formulas, such as the special values
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where g·(·) are the link functions applied to fπ, fα, fι, fδ. The quantity N = 1 − ωp − φp −
ψp −

∑
ωu −

∑
φu −

∑
ψu corresponds to the multinomial logit model reference group.

(ii) The 1-parameter combo PMF is Pr(Y = y; θπ, ωp, θα, φp, θι, ψp, θδ,ωnp,φnp,ψnp) =

0, y ∈ T ,
ωp fα(y) /
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fα(u), y ∈ Ap,

ωs, y = as ∈ Anp, s = 1, . . . , |Anp|,
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∆ fπ(y) + φs, y = is ∈ Inp, s = 1, . . . , |Inp|,
∆ fπ(y)− ψp fδ(y) /

∑
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fδ(u), y ∈ Dp,

∆ fπ(y)− ψs, y = ds ∈ Dnp, s = 1, . . . , |Dnp|,
∆ fπ(y), y ∈ R\S,

(3)

where ∆ is a normalizing constant.

(iii) VGLMs and its infrastructure, especially η, constraint matrices Hk, and the multinomial logit
model (MLM) with its softmax function. VGAMs are needed for smoothing. Yee and Ma
(2024) is probably the best for these topics. For convenience, the following formulas are a brief
summary of most of these.

For most VGLMs the data can be written (xi,yi), i = 1, . . . , n, independently and the
PMF/PDF for the ith observation is

f(yi|xi;θ) = h(yi; η1(xi), . . . , ηM(xi))

for some f(·) and h(·). The θ are generic parameters, and coupled with ηj = gj(θj) = βTx,
the parameters are modelled as linear predictors. The parameter link functions gj are used to

3



transform the parameters. One can write x = (x1, . . . , xd)
T or xi = (xi1, . . . , xid)

T , and η =
(η1, . . . , ηM)T . For most VGLMs the log-likelihood ` =

∑n
i=1w

∗
i `i(η1, . . . , ηM) is maximized.

The w∗i are known positive prior weights.

For VGLMs:

η(x) = H1 β
∗
(1)x1 + · · ·+ Hd β

∗
(d)xd = BTx (4)

where H1, . . . ,Hd are known full-column rank constraint matrices, and β∗(k) is a vector con-
taining a possibly reduced set of unknown regression coefficients. With no constraints at all,
Hk = IM for all k. Usually x1 = 1 (intercept term). In general,

BT =
(
H1β

∗
(1) · · · Hdβ

∗
(d)

)
. (5)

For VGAMs: (4) extends to

η(x) = H1 β
∗
(1)x1 + H2 f

∗
2(x2) + · · ·+ Hp f

∗
d(xd) (6)

where f ∗k(xk) = (f ∗(1)k(xk), . . . , f
∗
(rk)k

(xk))
T is a rk-vector of smooth functions of xk (estimated

by a vector smoothing spline). With no constraints, ηj =
p∑

k=1

f(j)k(xk).

For RR-VGLMs:

η(x) = BT
1 x1 + Aν (7)

where x = (xT1 ,x
T
2 )T , ν = CTx2 is an R-vector of latent variables, A is M×R and C is p2×R.

Note that A and C are general (thin) matrices whereas doubly constrained RR-VGLMs (DRR-
VGLMs) allow the matrices to have structure.

For DRR-VGLMs:
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Here, dim(x) = d = p with dim(x1) = p1, dim(x2) = p2, and p1 + p2 = d. Also, A and C are
estimated, and B = (BT

1 BT
2 )T with B2 = C AT , a reduced-rank approximation of a subset

of B (cf. (4)). The rank R is often 1 or 2, maybe 3 . . . . Using corner constraints is one method
to ensure A and C are unique.

For the MLM:

g(ps) = ηs = log {ps/pD+1} , s = 1, . . . , D,

where p = (p1, . . . , pD)T is a vector of probabilities. Then g is known as the multilogit link, and
pD+1 = 1 −

∑D
u=1 pu corresponds to the reference/baseline group. The inverse link (softmax)

is ps = eηs/
∑D+1

u=1 e
ηu where ηD+1 ≡ 0 for identifiability.

(iv) Prior experience using the VGAM package is ideal, especially vglm(), multinomial(), the
zero argument and negbinomial(). The help file for gaitdpoisson() really needs to be
digested. Yee (2015) and Yee (2008) are good for these topics, as is VGAMrefcard.pdf at
https://www.stat.auckland.ac.nz/~yee

(v) Firstly, the Shiny app at https://www.stat.auckland.ac.nz/~yee is strongly recommended
for exploring the combo PMF interactively and tying together (3) with the software.

(vi) Some experience fitting some simple special cases, such as the zero-inflated Poisson model,
certainly helps but is not necessary.
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We split the following items into three stages.

1.2 (I) Pre-fitting

1. Are the data are representative of future data sets? If not, there is little point in fitting a
regression model for prediction. If not, a regression model can still be very useful for ‘explaining’
the data, e.g., determine which variables are associated with the response, identifying certain
subgroups, and how much measurement error there is.

2. Are the data heaped and/or seeped? That is, is there measurement error?

3. Partition the data into training and test sets and spikeplot them. Repeating this a few times,
they should give an idea how sampling variation affects certain features such as spikes and dips
(holes). This helps in the choice of A, I, D below. One should try to have as few special values
assigned to these sets as possible. Ignore features that sometimes vanish, e.g., small spikes.

4. Choose a parent distribution based on the spikeplots. This depends on the general shape
and/or quantities such as the variance-to-mean ratio. For a long monotonic tail, the zeta and
logarithmic can be suitable. If overdispersed and unimodal then possibly a negative binomial
(NB), else a Poisson. If there are no special values exhibiting a nonignorable feature then a
standard regression model could suffice; GAITD regression would add little benefit for much
complexity.

5. Identify any truncated values for T first. These come from three regions: the lower tail, upper
tail, and special values in between. There ought to be a good explanation for each value, such
as a structural reason. Assigning a value for T just because there are no such values in the
data set is a weak and dubious reason.

6. If present, starting with the largest spikes (or heaps), specify A or I (or D later) depending on
the research question. Recall that GA can explain why observations are there, GI accounts for
why they are there in excess, and GD regression can explain why observations are not there.
Ideally there is external justification for each element in A and I to strengthen the overall
choice and make the model more defensible, e.g., in the case of heaping/seeping.

Depending on the specific research question(s), choose betweenA, I andD. If unsure, chooseA.

7. We recommend choosing which from the four operators first based on the research question,
and then its values. After that, decide between parametric and nonparametric.

8. If present, do likewise for dips and D last. Deflation is much harder to model compared
to alteration and inflation. From item 3, ignore minor spikes and dips that may be due to
sampling variation or are practically unimportant. It only takes one misspecified special value
for numerical problems to occur.

9. Outliers on the RHS tail and other features not able to be handled might be artificially censored
by altering, e.g., Yee and Ma (2024) has an example. But the action and consequences need to
be described in the report.

10. Choose between parametric and nonparametric A/I/D—do the spikes/dips follow a similar
distribution as the parent? Parametric is preferred but this should be checked by using training
and test data. Overfitting should be borne in mind.
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11. If Ap, Ip, Dp are specified then ideally their cardinality is large enough: |Ap| > dim(θπ),
|Ip| > dim(θπ), |Dp| > dim(θπ). One borrows strength by having θπ = θα = θι = θδ
(arguments eq.ap, eq.ip, eq.dp) so that estimation is much easier and stable. If not, then
the position of the elements in Ap, Ip, Dp determine the overall stability of the model, e.g., if

all the elements in Ap are close to each other relative to fα(·) then Var(θ̂α) will be very large.
Hence the range of elements within each of Ap, Ip, Dp ought to be wide.

In passing, it is noted that although multicollinearity applies to the columns of X in GLMs,
the problems described here involving values of y bear some similarity.

1.3 (II) Fitting

12. The Shiny app may be helpful for item 10.

13. Fit a null model first. Set trace = TRUE because the performance of the algorithm gives
important insights into the underlying problem modelling (Osborne, 1992). Well-conditioned
VGLMs usually converge within 7–9 IRLS iterations. Any numerical problems are indicative
of misspecified S values. If needed, the Shiny app is useful for inputting initial values.

Too much A/I/D will lead to the normalizing constant ∆ becoming negative. For example,
the combined effects of Anp, Inp, Dnp are particularly expensive so that there is no baseline
probability left. Sometimes it is necessary to analyze a subset of the data, e.g., Y > 0 when
the sample proportion of 0s is high.

14. When adding covariates, automatic methods for variable selection are better applied to a few
preselected regressors than feeding in a large vector x without thought. Although the MLM
is intercept-only by default, care is needed fitting the MLM with covariates—the number of
coefficients multiplies quickly so there may be interpretability problems. Reduced rank vector
generalized linear models (RR-VGLMs) and doubly constrained RR-VGLMs (DRR-VGLMs)
are potentially suitable but require finesse.

If the intercepts are to be interpreted (a useful feature to have), centering the covariates is a
good idea. But multilogitlink(, inverse = TRUE) is not easy to compute in one’s head.

15. For Anp, Inp, Dnp, if some MLM probabilities appear equal then a parallelism constraint might
be applied. Arguments parallel.a, parallel.i, parallel.d support this. However, it is
difficult to apply a parallelism constraint to a subset of MLM probabilities. One would have to
use constraints to manually input them, and constructing constraint matrices would entail
laborious work and meticulous bookkeeping and care based on (2).

16. With covariates, variable selection with step4() applied to a "vglm" object is a possibility be-
cause stepwise regression based on AIC is more theoretically grounded with parametric models.
In contrast, additive models are more heuristic and inference is based on approximations and
asymptotics.

17. If there are only a very few regressors, try fitting an additive model, i.e., vgam(). Smoothers
can suggest transformations or terms easily replaced by low-degree polynomials, etc.
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1.4 (III) Post-fitting

18. Rootograms (Kleiber and Zeileis, 2016) are a useful diagnostic tool: see ?rootogram4.

19. Another diagnostic is simulate(fit) and then overlay each simulation on a spikeplot of the
original data or a test set.

20. Be aware of the limitations of p-values. Because the choice of A, I, T , D usually involves
looking at the data, any p-values should be cited sparingly (if at all) and interpreted with
caution and admission. A caveat is often appropriate. This is an open research area.

21. Use training and test data to validate the above. Guard against overfitting since a slightly
underfitting model is preferred over a mildly overfitting one. Because if its immense flexibility,
overfitting remains probably the biggest problem amateurs will face with GAITD regression.

Last modified: 2024–05.

1.5 Further instructions

1. Based on a few spikeplots from item 3, identify and sort the major features into a list in
descending order. There should be a maximum of seven features, as there are only seven(!)
operators. Ideally there are far fewer. Guard against overfitting.

2. When assigning elements into each of the seven subsets comprising S, ask: is there any plausible
reason to explain this?

3. Going down the list, assign each feature to all remaining operators. That is,

� choose between parametric and nonparametric, with the first being preferable and non-
parametric handling a few aberrant values that are more inexplicable.

� Consider changing from one operator to another, as the number of choices diminishes.
For example, replace Ap to Ip. The most important features should be handled by the
operator(s) that answers the main research question(s). Nuisance features may have to
be handled using an operator that models the effect but doesn’t answer any research
questions per se.

� If there are no operators left, then are the remaining features ignorable? If not, try
repeating these instructions using a different permutation of choices.
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